Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, data storage, model checking, comparison and diagnostics.
ArviZ also has a Julia wrapper available ArviZ.jl.
The ArviZ documentation can be found in the official docs. First time users may find the quickstart to be helpful. Additional guidance can be found in the user guide.
ArviZ is available for installation from PyPI. The latest stable version can be installed using pip:
pip install arviz
ArviZ is also available through conda-forge.
conda install -c conda-forge arviz
The latest development version can be installed from the main branch using pip:
pip install git+git://github.com/arviz-devs/arviz.git
Another option is to clone the repository and install using git and setuptools:
git clone https://github.com/arviz-devs/arviz.git
cd arviz
python setup.py install
ArviZ is tested on Python 3.10, 3.11 and 3.12, and depends on NumPy, SciPy, xarray, and Matplotlib.
If you use ArviZ and want to cite it please use
Here is the citation in BibTeX format
@article{arviz_2019,
doi = {10.21105/joss.01143},
url = {https://doi.org/10.21105/joss.01143},
year = {2019},
publisher = {The Open Journal},
volume = {4},
number = {33},
pages = {1143},
author = {Ravin Kumar and Colin Carroll and Ari Hartikainen and Osvaldo Martin},
title = {ArviZ a unified library for exploratory analysis of Bayesian models in Python},
journal = {Journal of Open Source Software}
}
ArviZ is a community project and welcomes contributions. Additional information can be found in the Contributing Readme
ArviZ wishes to maintain a positive community. Additional details can be found in the Code of Conduct
ArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate here.
FAQs
Exploratory analysis of Bayesian models
We found that arviz demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 5 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.