batchspawner for Jupyterhub

This is a custom spawner for Jupyterhub that is designed for installations on clusters using batch scheduling software.
This began as a generalization of mkgilbert's batchspawner which in turn was inspired by Andrea Zonca's blog post where he explains his implementation for a spawner that uses SSH and Torque. His github repo is found here.
This package formerly included WrapSpawner and ProfilesSpawner, which provide mechanisms for runtime configuration of spawners. These have been split out and moved to the wrapspawner
package.
Installation
-
from root directory of this repo (where setup.py is), run pip install -e .
If you don't actually need an editable version, you can simply run
pip install batchspawner
-
add lines in jupyterhub_config.py for the spawner you intend to use, e.g.
c = get_config()
c.JupyterHub.spawner_class = 'batchspawner.TorqueSpawner'
import batchspawner
-
Depending on the spawner, additional configuration will likely be needed.
Batch Spawners
For information on the specific spawners, see SPAWNERS.md.
Overview
This file contains an abstraction layer for batch job queueing systems (BatchSpawnerBase
), and implements
Jupyterhub spawners for Torque, Moab, SLURM, SGE, HTCondor, LSF, and eventually others.
Common attributes of batch submission / resource manager environments will include notions of:
- queue names, resource manager addresses
- resource limits including runtime, number of processes, memory
- singleuser child process running on (usually remote) host not known until runtime
- job submission and monitoring via resource manager utilities
- remote execution via submission of templated scripts
- job names instead of PIDs
BatchSpawnerBase
provides several general mechanisms:
- configurable traits
req_foo
that are exposed as {foo}
in job template scripts. Templates (submit scripts in particular) may also use the full power of jinja2. Templates are automatically detected if a {{
or {%
is present, otherwise str.format() used. - configurable command templates for submitting/querying/cancelling jobs
- a generic concept of job-ID and ID-based job state tracking
- overrideable hooks for subclasses to plug in logic at numerous points
Example
Every effort has been made to accommodate highly diverse systems through configuration
only. This example consists of the (lightly edited) configuration used by the author
to run Jupyter notebooks on an academic supercomputer cluster.
import batchspawner
c.JupyterHub.spawner_class = 'batchspawner.TorqueSpawner'
c.Spawner.http_timeout = 120
c.BatchSpawnerBase.req_nprocs = '2'
c.BatchSpawnerBase.req_queue = 'mesabi'
c.BatchSpawnerBase.req_host = 'mesabi.xyz.edu'
c.BatchSpawnerBase.req_runtime = '12:00:00'
c.BatchSpawnerBase.req_memory = '4gb'
c.TorqueSpawner.batch_script = '''#!/bin/sh
#PBS -q {queue}@{host}
#PBS -l walltime={runtime}
#PBS -l nodes=1:ppn={nprocs}
#PBS -l mem={memory}
#PBS -N jupyterhub-singleuser
#PBS -v {keepvars}
module load python3
{cmd}
'''
c.TorqueSpawner.state_exechost_exp = r'int-\1.mesabi.xyz.edu'
Security
Unless otherwise stated for a specific spawner, assume that spawners
do evaluate shell environment for users and thus the security
requirements of JupyterHub security for untrusted
users
are not fulfilled because some (most?) spawners do start a user
shell which will execute arbitrary user environment configuration
(.profile
, .bashrc
and the like) unless users do not have
access to their own cluster user account. This is something which we
are working on.
Provide different configurations of BatchSpawner
Overview
ProfilesSpawner
, available as part of the wrapspawner
package, allows the Jupyterhub administrator to define a set of different spawning configurations,
both different spawners and different configurations of the same spawner.
The user is then presented a dropdown menu for choosing the most suitable configuration for their needs.
This method provides an easy and safe way to provide different configurations of BatchSpawner
to the
users, see an example below.
Example
The following is based on the author's configuration (at the same site as the example above)
showing how to give users access to multiple job configurations on the batch scheduled
clusters, as well as an option to run a local notebook directly on the jupyterhub server.
import batchspawner
c.JupyterHub.spawner_class = 'wrapspawner.ProfilesSpawner'
c.Spawner.http_timeout = 120
c.BatchSpawnerBase.req_host = 'mesabi.xyz.edu'
c.BatchSpawnerBase.req_runtime = '12:00:00'
c.TorqueSpawner.state_exechost_exp = r'in-\1.mesabi.xyz.edu'
c.ProfilesSpawner.profiles = [
( "Local server", 'local', 'jupyterhub.spawner.LocalProcessSpawner', {'ip':'0.0.0.0'} ),
('Mesabi - 2 cores, 4 GB, 8 hours', 'mesabi2c4g12h', 'batchspawner.TorqueSpawner',
dict(req_nprocs='2', req_queue='mesabi', req_runtime='8:00:00', req_memory='4gb')),
('Mesabi - 12 cores, 128 GB, 4 hours', 'mesabi128gb', 'batchspawner.TorqueSpawner',
dict(req_nprocs='12', req_queue='ram256g', req_runtime='4:00:00', req_memory='125gb')),
('Mesabi - 2 cores, 4 GB, 24 hours', 'mesabi2c4gb24h', 'batchspawner.TorqueSpawner',
dict(req_nprocs='2', req_queue='mesabi', req_runtime='24:00:00', req_memory='4gb')),
('Interactive Cluster - 2 cores, 4 GB, 8 hours', 'lab', 'batchspawner.TorqueSpawner',
dict(req_nprocs='2', req_host='labhost.xyz.edu', req_queue='lab',
req_runtime='8:00:00', req_memory='4gb', state_exechost_exp='')),
]
c.ProfilesSpawner.ip = '0.0.0.0'
Debugging batchspawner
Sometimes it can be hard to debug batchspawner, but it's not really
once you know how the pieces interact. Check the following places for
error messages:
-
Check the JupyterHub logs for errors.
-
Check the JupyterHub logs for the batch script that got submitted
and the command used to submit it. Are these correct? (Note that
there are submission environment variables too, which aren't
displayed.)
-
At this point, it's a matter of checking the batch system. Is the
job ever scheduled? Does it run? Does it succeed? Check the batch
system status and output of the job. The most comon failure
patterns are a) job never starting due to bad scheduler options, b)
job waiting in the queue beyond the start_timeout
, causing
JupyterHub to kill the job.
-
At this point the job starts. Does it fail immediately, or before
Jupyter starts? Check the scheduler output files (stdout/stderr of
the job), wherever it is stored. To debug the job script, you can
add debugging into the batch script, such as an env
or set -x
.
-
At this point Jupyter itself starts - check its error messages. Is
it starting with the right options? Can it communicate with the
hub? At this point there usually isn't anything
batchspawner-specific, with the one exception below. The error log
would be in the batch script output (same file as above). There may
also be clues in the JupyterHub logfile.
-
Are you running on an NFS filesystem? It's possible for Jupyter to
experience issues due to varying implementations of the fcntl() system
call. (See also Jupyterhub-Notes and Tips: SQLite)
Common problems:
- Did you
import batchspawner
in the jupyterhub_config.py
file?
This is needed in order to activate the batchspawer API in
JupyterHub.
Changelog
See CHANGELOG.md.