Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
|Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads|
This repo contains a TensorFlow 2.0
_ Keras
_ implementation of google-research/bert
_
with support for loading of the original pre-trained weights
_,
and producing activations numerically identical to the one calculated by the original model.
ALBERT
_ and adapter-BERT
_ are also supported by setting the corresponding
configuration parameters (shared_layer=True
, embedding_size
for ALBERT
_
and adapter_size
for adapter-BERT
_). Setting both will result in an adapter-ALBERT
by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter.
The implementation is build from scratch using only basic tensorflow operations,
following the code in google-research/bert/modeling.py
_
(but skipping dead code and applying some simplifications). It also utilizes kpe/params-flow
_ to reduce
common Keras boilerplate code (related to passing model and layer configuration arguments).
bert-for-tf2
_ should work with both TensorFlow 2.0
_ and TensorFlow 1.14
_ or newer.
30.Jul.2020 - VERBOSE=0
env variable for suppressing stdout output.
06.Apr.2020 - using latest py-params
introducing WithParams
base for Layer
and Model
. See news in kpe/py-params
_ for how to update (_construct()
signature has change and
requires calling super().__construct()
).
06.Jan.2020 - support for loading the tar format weights from google-research/ALBERT
.
18.Nov.2019 - ALBERT tokenization added (make sure to import as from bert import albert_tokenization
or from bert import bert_tokenization
).
08.Nov.2019 - using v2 per default when loading the TFHub/albert
_ weights of google-research/ALBERT
_.
05.Nov.2019 - minor ALBERT word embeddings refactoring (word_embeddings_2
-> word_embeddings_projector
) and related parameter freezing fixes.
04.Nov.2019 - support for extra (task specific) token embeddings using negative token ids.
29.Oct.2019 - support for loading of the pre-trained ALBERT weights released by google-research/ALBERT
_ at TFHub/albert
_.
11.Oct.2019 - support for loading of the pre-trained ALBERT weights released by brightmart/albert_zh ALBERT for Chinese
_.
10.Oct.2019 - support for ALBERT
_ through the shared_layer=True
and embedding_size=128
params.
03.Sep.2019 - walkthrough on fine tuning with adapter-BERT and storing the
fine tuned fraction of the weights in a separate checkpoint (see tests/test_adapter_finetune.py
).
02.Sep.2019 - support for extending the token type embeddings of a pre-trained model
by returning the mismatched weights in load_stock_weights()
(see tests/test_extend_segments.py
).
25.Jul.2019 - there are now two colab notebooks under examples/
showing how to
fine-tune an IMDB Movie Reviews sentiment classifier from pre-trained BERT weights
using an adapter-BERT
_ model architecture on a GPU or TPU in Google Colab.
28.Jun.2019 - v.0.3.0 supports adapter-BERT
_ (google-research/adapter-bert
_)
for "Parameter-Efficient Transfer Learning for NLP", i.e. fine-tuning small overlay adapter
layers over BERT's transformer encoders without changing the frozen BERT weights.
MIT. See License File <https://github.com/kpe/bert-for-tf2/blob/master/LICENSE.txt>
_.
bert-for-tf2
is on the Python Package Index (PyPI):
::
pip install bert-for-tf2
BERT in bert-for-tf2
is implemented as a Keras layer. You could instantiate it like this:
.. code:: python
from bert import BertModelLayer
l_bert = BertModelLayer(**BertModelLayer.Params( vocab_size = 16000, # embedding params use_token_type = True, use_position_embeddings = True, token_type_vocab_size = 2,
num_layers = 12, # transformer encoder params
hidden_size = 768,
hidden_dropout = 0.1,
intermediate_size = 4*768,
intermediate_activation = "gelu",
adapter_size = None, # see arXiv:1902.00751 (adapter-BERT)
shared_layer = False, # True for ALBERT (arXiv:1909.11942)
embedding_size = None, # None for BERT, wordpiece embedding size for ALBERT
name = "bert" # any other Keras layer params
))
or by using the bert_config.json
from a pre-trained google model
_:
.. code:: python
import bert
model_dir = ".models/uncased_L-12_H-768_A-12"
bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
now you can use the BERT layer in your Keras model like this:
.. code:: python
from tensorflow import keras
max_seq_len = 128 l_input_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32') l_token_type_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32')
output = l_bert(l_input_ids) # output: [batch_size, max_seq_len, hidden_size] model = keras.Model(inputs=l_input_ids, outputs=output) model.build(input_shape=(None, max_seq_len))
output = l_bert([l_input_ids, l_token_type_ids]) # [batch_size, max_seq_len, hidden_size] model = keras.Model(inputs=[l_input_ids, l_token_type_ids], outputs=output) model.build(input_shape=[(None, max_seq_len), (None, max_seq_len)])
if you choose to use adapter-BERT
_ by setting the adapter_size
parameter,
you would also like to freeze all the original BERT layers by calling:
.. code:: python
l_bert.apply_adapter_freeze()
and once the model has been build or compiled, the original pre-trained weights can be loaded in the BERT layer:
.. code:: python
import bert
bert_ckpt_file = os.path.join(model_dir, "bert_model.ckpt") bert.load_stock_weights(l_bert, bert_ckpt_file)
N.B. see tests/test_bert_activations.py
_ for a complete example.
.. code:: python
for a quick test, you can replace it with something like:
.. code:: python
model = keras.models.Sequential([ keras.layers.InputLayer(input_shape=(128,)), l_bert, keras.layers.Lambda(lambda x: x[:, 0, :]), keras.layers.Dense(2) ]) model.build(input_shape=(None, 128))
google-research/bert
_ pre-trained weights?.. code:: python
model_name = "uncased_L-12_H-768_A-12" model_dir = bert.fetch_google_bert_model(model_name, ".models") model_ckpt = os.path.join(model_dir, "bert_model.ckpt")
bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
bert.load_bert_weights(l_bert, model_ckpt) # should be called after model.build()
google-research/ALBERT
_ pre-trained weights (fetching from TFHub)?see tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>
_:
.. code:: python
model_name = "albert_base" model_dir = bert.fetch_tfhub_albert_model(model_name, ".models") model_params = bert.albert_params(model_name) l_bert = bert.BertModelLayer.from_params(model_params, name="albert")
bert.load_albert_weights(l_bert, albert_dir) # should be called after model.build()
google-research/ALBERT
_ pre-trained weights (non TFHub)?see tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>
_:
.. code:: python
model_name = "albert_base_v2" model_dir = bert.fetch_google_albert_model(model_name, ".models") model_ckpt = os.path.join(albert_dir, "model.ckpt-best")
model_params = bert.albert_params(model_dir) l_bert = bert.BertModelLayer.from_params(model_params, name="albert")
bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build()
brightmart/albert_zh
_ pre-trained weights?see tests/nonci/test_albert.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_albert.py>
_:
.. code:: python
model_name = "albert_base" model_dir = bert.fetch_brightmart_albert_model(model_name, ".models") model_ckpt = os.path.join(model_dir, "albert_model.ckpt")
bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build()
google-research/bert
_ models?.. code:: python
do_lower_case = not (model_name.find("cased") == 0 or model_name.find("multi_cased") == 0) bert.bert_tokenization.validate_case_matches_checkpoint(do_lower_case, model_ckpt) vocab_file = os.path.join(model_dir, "vocab.txt") tokenizer = bert.bert_tokenization.FullTokenizer(vocab_file, do_lower_case) tokens = tokenizer.tokenize("Hello, BERT-World!") token_ids = tokenizer.convert_tokens_to_ids(tokens)
brightmart/albert_zh
?.. code:: python
import params_flow pf
albert_zh_vocab_url = "https://raw.githubusercontent.com/brightmart/albert_zh/master/albert_config/vocab.txt" vocab_file = pf.utils.fetch_url(albert_zh_vocab_url, model_dir)
tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file) tokens = tokenizer.tokenize("你好世界") token_ids = tokenizer.convert_tokens_to_ids(tokens)
google-research/ALBERT
_ models?.. code:: python
import sentencepiece as spm
spm_model = os.path.join(model_dir, "assets", "30k-clean.model") sp = spm.SentencePieceProcessor() sp.load(spm_model) do_lower_case = True
processed_text = bert.albert_tokenization.preprocess_text("Hello, World!", lower=do_lower_case) token_ids = bert.albert_tokenization.encode_ids(sp, processed_text)
google-research/ALBERT
_ models?.. code:: python
import bert
vocab_file = os.path.join(model_dir, "vocab.txt") tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file=vocab_file) tokens = tokenizer.tokenize(u"你好世界") token_ids = tokenizer.convert_tokens_to_ids(tokens)
BERT
_ - BERT: Pre-training of Deep Bidirectional Transformers for Language Understandingadapter-BERT
_ - adapter-BERT: Parameter-Efficient Transfer Learning for NLPALBERT
_ - ALBERT: A Lite BERT for Self-Supervised Learning of Language Representationsgoogle-research/bert
_ - the original BERT
_ implementationgoogle-research/ALBERT
_ - the original ALBERT
_ implementation by Googlegoogle-research/albert(old)
_ - the old location of the original ALBERT
_ implementation by Googlebrightmart/albert_zh
_ - pre-trained ALBERT
_ weights for Chinesekpe/params-flow
_ - A Keras coding style for reducing Keras
_ boilerplate code in custom layers by utilizing kpe/py-params
_.. _kpe/params-flow
: https://github.com/kpe/params-flow
.. _kpe/py-params
: https://github.com/kpe/py-params
.. _bert-for-tf2
: https://github.com/kpe/bert-for-tf2
.. _Keras
: https://keras.io
.. _pre-trained weights
: https://github.com/google-research/bert#pre-trained-models
.. _google-research/bert
: https://github.com/google-research/bert
.. _google-research/bert/modeling.py
: https://github.com/google-research/bert/blob/master/modeling.py
.. _BERT
: https://arxiv.org/abs/1810.04805
.. _pre-trained google model
: https://github.com/google-research/bert
.. _tests/test_bert_activations.py
: https://github.com/kpe/bert-for-tf2/blob/master/tests/test_compare_activations.py
.. _TensorFlow 2.0
: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf
.. _TensorFlow 1.14
: https://www.tensorflow.org/versions/r1.14/api_docs/python/tf
.. _google-research/adapter-bert
: https://github.com/google-research/adapter-bert/
.. _adapter-BERT
: https://arxiv.org/abs/1902.00751
.. _ALBERT
: https://arxiv.org/abs/1909.11942
.. _brightmart/albert_zh ALBERT for Chinese
: https://github.com/brightmart/albert_zh
.. _brightmart/albert_zh
: https://github.com/brightmart/albert_zh
.. _google ALBERT weights
: https://github.com/google-research/google-research/tree/master/albert
.. _google-research/albert(old)
: https://github.com/google-research/google-research/tree/master/albert
.. _google-research/ALBERT
: https://github.com/google-research/ALBERT
.. _TFHub/albert
: https://tfhub.dev/google/albert_base/2
.. |Build Status| image:: https://travis-ci.com/kpe/bert-for-tf2.svg?branch=master :target: https://travis-ci.com/kpe/bert-for-tf2 .. |Coverage Status| image:: https://coveralls.io/repos/kpe/bert-for-tf2/badge.svg?branch=master :target: https://coveralls.io/r/kpe/bert-for-tf2?branch=master .. |Version Status| image:: https://badge.fury.io/py/bert-for-tf2.svg :target: https://badge.fury.io/py/bert-for-tf2 .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/bert-for-tf2.svg .. |Downloads| image:: https://img.shields.io/pypi/dm/bert-for-tf2.svg .. |Twitter| image:: https://img.shields.io/twitter/follow/siddhadev?logo=twitter&label=&style= :target: https://twitter.com/intent/user?screen_name=siddhadev
FAQs
A TensorFlow 2.0 Keras implementation of BERT.
We found that bert-for-tf2 demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.