New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

biocarta

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

biocarta

  • 0.2.26
  • PyPI
  • Socket score

Maintainers
1

Biocarta

Creating Cartographic Representations of Biological Data DOI

Installation

pip install biocarta

Example code

if __name__ == '__main__' :
    from biocarta.quantification import full_mapping
    #
    adf = pd.read_csv('analytes.tsv',sep='\t',index_col=0)
    #
    # WE DO NOT WANT TO KEEP POTENTIALLY BAD ENTRIES 
    adf = adf.iloc[ np.inf != np.abs( 1.0/np.std(adf.values,1) ) ,
                    np.inf != np.abs( 1.0/np.std(adf.values,0) ) ].copy()
    #
    # READING IN SAMPLE INFORMATION
    # THIS IS NEEDED FOR THE ALIGNED PCA TO WORK
    jdf = pd.read_csv('journal.tsv',sep='\t',index_col=0)
    jdf = jdf.loc[:,adf.columns.values]
    #
    alignment_label , sample_label = 'Disease' , None
    add_labels = ['Cell-line']
    #
    cmd                = 'max'
    # WRITE FILES AND MAKE NOISE
    bVerbose           = True
    # CREATE AN OPTIMIZED REPRESENTATION
    bExtreme           = True
    # WE MIGHT WANT SOME SPECIFIC INTERSECTIONS OF THE HIERARCHY
    n_clusters         = [20,40,60,80,100]
    # USE ALL INFORMATION
    n_components       = None
    umap_dimension     = 2
    n_neighbors        = 20
    local_connectivity = 20.
    transform_seed     = 42
    #
    print ( adf , jdf )
    #
    # distance_type = 'correlation,spearman,absolute' # DONT USE THIS
    distance_type = 'covariation' # BECOMES CO-EXPRESSION BASED
    #
    results = full_mapping ( adf , jdf                  ,
        bVerbose = bVerbose             ,
        bExtreme = bExtreme             ,
        n_clusters = n_clusters         ,
        n_components = n_components     ,
        distance_type = distance_type   ,
        umap_dimension = umap_dimension ,
        umap_n_neighbors = n_neighbors  ,
        umap_local_connectivity = local_connectivity ,
        umap_seed = transform_seed      ,
        hierarchy_cmd = cmd             ,
        add_labels = add_labels         ,
        alignment_label = alignment_label ,
        sample_label = None     )
    #
    map_analytes        = results[0]
    map_samples         = results[1]
    hierarchy_analytes  = results[2]
    hierarchy_samples   = results[3]

or just call it using the default values:

import pandas as pd
import numpy  as np

if __name__ == '__main__' :
    from biocarta.quantification import full_mapping
    #
    adf = pd.read_csv('analytes.tsv',sep='\t',index_col=0)
    #
    adf = adf.iloc[ np.inf != np.abs( 1.0/np.std(adf.values,1) ) ,
                    np.inf != np.abs( 1.0/np.std(adf.values,0) ) ].copy()
    jdf = pd.read_csv('journal.tsv',sep='\t',index_col=0)
    jdf = jdf.loc[:,adf.columns.values]
    #
    alignment_label , sample_label = 'Disease' , None
    add_labels = ['Cell-line']
    #
    results = full_mapping ( adf , jdf  ,
        bVerbose = True			,
        n_clusters = [40,80,120]        ,
        add_labels = add_labels         ,
        alignment_label = alignment_label )
    #
    map_analytes        = results[0]
    map_samples         = results[1]
    hierarchy_analytes  = results[2]
    hierarchy_samples   = results[3]

and plotting the information of the map analytes yields : Cancer Disease Example

You can also run an alternative algorithm where the UMAP coordinates are employed directly for clustering by setting

    results = full_mapping ( adf , jdf  ,
        bVerbose = True			        ,
        bUseUmap = True                 ,
        n_clusters = [40,80,120]        ,
        add_labels = add_labels         ,
        alignment_label = alignment_label )

with the following results.

Download the zip and open the html index:

chromium index.html

Other generated solutions

The clustering visualisations were created using the Biocarta and hvplot :

What groupings corresponds to biomarker variance that describe them? Here are two visualisations of that:

Diseases : cancers biocarta gfa enrichment biocarta treemap cluster 61

Tissues : tissues

Single Cells: single cells biocarta gfa enrichment biocarta treemap cluster 47

Blood Cells: blood cells biocarta gfa enrichment biocarta treemap cluster 2

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc