Cane - Categorical Attribute traNsformation Environment
CANE is a simpler but powerful preprocessing method for machine learning.
At the moment offers some preprocessing methods:
--> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (https://doi.org/10.1109/IJCNN.2019.8851888), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data).
An example of this can be viewed by the following pdf:
View PDF.
Which the 1,000 highest frequency values (decreasing order) for the user city attribute for the TEST traffic data (which contains a total of 10,690 levels).
For this attribute and when , PCP selects only the most frequent 688 levels (dashed vertical line) merging the other 10,002 infrequent levels into the "Others" label.
This method results in 689 binary inputs, which is much less than the 10690 binary inputs required by the standard one-hot transform (reduction of percentage points).
--> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (https://ieeexplore.ieee.org/document/8710472).
--> Implementation of a simpler One-Hot-Encoding method.
--> Minmax and Standard scaler (based on sklearn functions) with column selection and multicore support. Also, it is possible to apply these transformations to specific columns only instead of the full dataset (follow the example). However it only works with numerical data (e.g., MSE, decision scores)
--> You can also provide a custom scaler version of your own! (check example)
--> Use IDF with spark dataframes
Future Function ideas:
MultiColumn scale (based on the implementation of IDF and PCP)
Scaling of IDF values (normalized IDF)
Installation
To install this package please run the following command
pip install cane
New
Version 2.3:
[x] - PCP with spark dataframes
[x] - Improvements in the example file and readme
[x] - New Citation
Suggestions and feedback
Any feedback will be appreciated.
For questions and other suggestions contact luis.matos@dsi.uminho.pt
Found any bugs? Post Them on the github page of the project! (https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment)
Thanks for the support!
Citation
To cite this module please use:
@article{MATOS2022100359,
author = {Lu{\'\i}s Miguel Matos and Jo{\~a}o Azevedo and Arthur Matta and Andr{\'e} Pilastri and Paulo Cortez and Rui Mendes},
doi = {https://doi.org/10.1016/j.simpa.2022.100359},
issn = {2665-9638},
journal = {Software Impacts},
keywords = {Data preprocessing, CANE, Python programming language, Machine learning},
pages = {100359},
title = {Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing},
url = {https://www.sciencedirect.com/science/article/pii/S2665963822000720},
year = {2022},
bdsk-url-1 = {https://www.sciencedirect.com/science/article/pii/S2665963822000720},
bdsk-url-2 = {https://doi.org/10.1016/j.simpa.2022.100359}}
Example
import pandas as pd
import cane
import timeit
import numpy as np
x = [k for s in ([k] * n for k, n in [('a', 70000), ('b', 50000), ('c', 30000), ('d', 10000), ('e', 1000)]) for k in s]
df = pd.DataFrame({f'x{i}' : x for i in range(1, 130)})
dataPCP = cane.pcp(df)
dataPCP = cane.pcp(df, n_coresJob=2)
dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False)
dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"])
dataPCP = cane.pcp(df)
dicionary = cane.PCPDictionary(dataset = dataPCP, columnsUse = dataPCP.columns,
targetColumn = None)
print(dicionary)
dataIDF = cane.idf(df)
dataIDF = cane.idf(df, n_coresJob=2)
dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False)
dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"])
dataIDF = cane.idf_multicolumn(df, columns_use = ["x1","x2"])
idfDicionary = cane.idfDictionary(Original = df, Transformed = dataIDF, columns_use = ["x1","x2"])
dataH = cane.one_hot(df)
dataH2 = cane.one_hot(df, column_prefix='column')
dataH3 = cane.one_hot(df, column_prefix='customColName')
dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2)
dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2
,disableLoadBar = False)
dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2
,disableLoadBar = False,columns_use = ["x1","x2"])
x2 = [k for s in ([k] * n for k, n in [('a', 50),
('b', 10),
('c', 20),
('d', 15),
('e', 5)]) for k in s]
x3 = [k for s in ([k] * n for k, n in [('a', 40),
('b', 20),
('c', 1),
('d', 1),
('e', 38)]) for k in s]
df2 = pd.concat([pd.DataFrame({f'x{i}' : x2 for i in range(1, 3)}),pd.DataFrame({f'y{i}' : x3 for i in range(1, 3)})], axis=1)
dataPCP = cane.pcp(df2, n_coresJob=2,disableLoadBar = False)
print("normal PCP \n",dataPCP)
dataPCP2 = cane.pcp_multicolumn(df2, columns_use = ["x1","y1"])
print("multicolumn PCP \n",dataPCP2)
dataIDF = cane.idf(df2, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","y1"])
print("normal idf \n",dataIDF)
dataIDF2 = cane.idf_multicolumn(df2, columns_use = ["x1","y1"])
print("multicolumn idf \n",dataIDF2)
print("Time Measurement in 10 runs (unicore)")
OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10)
IT = timeit.timeit(lambda:cane.idf(df),number = 10)
PT = timeit.timeit(lambda:cane.pcp(df),number = 10)
print("One-Hot Time:",OT)
print("IDF Time:",IT)
print("PCP Time:",PT)
print("Time Measurement in 10 runs (multicore)")
OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=10),number = 10)
ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=10),number = 10)
PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=10),number = 10)
print("One-Hot Time Multicore:",OTM)
print("IDF Time Multicore:",ITM)
print("PCP Time Multicore:",PTM)
import cane
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
sparkDF=spark.createDataFrame(df)
cols = sparkDF.columns
DFIDF, idf = cane.spark_idf_multicolumn(sparkDF, cols)
print(DFIDF.show(20))
dataIDF = cane.idf(df)
print(dataIDF.equals(DFIDF.toPandas()))
import cane
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
sparkDF=spark.createDataFrame(df)
cols = sparkDF.columns
DFPCP, pcp = cane.spark_pcp(sparkDF, cols, 0.05, "Others")
DFPCP.show(20)
dataPCP = cane.pcp(df)
print(dataPCP.equals(DFPCP.toPandas()))
Scaler Example with cane
These examples present the usage of cane with the standard methods (standard scaler e min max scaler).
Also, it is presented how to implement a custom scaler function of your own with cane!
dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL'))
cane.scale_data(dfNumbers, n_cores = 3, scaleFunc="min_max")
cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="min_max")
cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="std")
import pandas as pd
import numpy as np
import cane
def customFunc(val):
return pd.DataFrame([round((i - 1) / 3, 2) for i in val],columns=[val.name + "_custom_scalled_function])
### This is will be your main script
from functions import *
# with a custom function to apply to data:
if __name__ == "__main__":
dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL'))
cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="custom", customfunc = customFunc)