Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

carbon-python-sdk

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

carbon-python-sdk

Client for Carbon

  • 0.2.56
  • PyPI
  • Socket score

Maintainers
2

Visit Carbon

Carbon

Connect external data to LLMs, no matter the source.

PyPI README.md

Table of Contents

Requirements

Python >=3.7

Installation

pip install carbon-python-sdk==0.2.56

Getting Started

from carbon import Carbon

# 1) Get an access token for a customer
carbon = Carbon(
    api_key="YOUR_API_KEY",
    customer_id="YOUR_CUSTOMER_ID",
)

token = carbon.auth.get_access_token()

# 2) Use the access token to authenticate moving forward
carbon = Carbon(access_token=token.access_token)

# use SDK as usual
white_labeling = carbon.auth.get_white_labeling()
# etc.

Async

async support is available by prepending a to any method.

import asyncio
from pprint import pprint
from carbon import Carbon, ApiException

carbon = Carbon(
    access_token="YOUR_API_KEY",
    api_key="YOUR_API_KEY",
    customer_id="YOUR_API_KEY",
)


async def main():
    try:
        # Get Access Token
        get_access_token_response = await carbon.auth.aget_access_token()
        print(get_access_token_response)
    except ApiException as e:
        print("Exception when calling AuthApi.get_access_token: %s\n" % e)
        pprint(e.body)
        if e.status == 422:
            pprint(e.body["detail"])
        pprint(e.headers)
        pprint(e.status)
        pprint(e.reason)
        pprint(e.round_trip_time)


asyncio.run(main())

Raw HTTP Response

To access raw HTTP response values, use the .raw namespace.

from pprint import pprint
from carbon import Carbon, ApiException

carbon = Carbon(
    access_token="YOUR_API_KEY",
    api_key="YOUR_API_KEY",
    customer_id="YOUR_API_KEY",
)

try:
    # Get Access Token
    get_access_token_response = carbon.auth.raw.get_access_token()
    pprint(get_access_token_response.body)
    pprint(get_access_token_response.body["access_token"])
    pprint(get_access_token_response.body["refresh_token"])
    pprint(get_access_token_response.headers)
    pprint(get_access_token_response.status)
    pprint(get_access_token_response.round_trip_time)
except ApiException as e:
    print("Exception when calling AuthApi.get_access_token: %s\n" % e)
    pprint(e.body)
    if e.status == 422:
        pprint(e.body["detail"])
    pprint(e.headers)
    pprint(e.status)
    pprint(e.reason)
    pprint(e.round_trip_time)

Reference

carbon.auth.get_access_token

Get Access Token

🛠️ Usage
get_access_token_response = carbon.auth.get_access_token()
🔄 Return

TokenResponse

🌐 Endpoint

/auth/v1/access_token get

🔙 Back to Table of Contents


carbon.auth.get_white_labeling

Returns whether or not the organization is white labeled and which integrations are white labeled

:param current_user: the current user :param db: the database session :return: a WhiteLabelingResponse

🛠️ Usage
get_white_labeling_response = carbon.auth.get_white_labeling()
🔄 Return

WhiteLabelingResponse

🌐 Endpoint

/auth/v1/white_labeling get

🔙 Back to Table of Contents


carbon.crm.get_account

Get Account

🛠️ Usage
get_account_response = carbon.crm.get_account(
    id="id_example",
    data_source_id=1,
    include_remote_data=False,
    includes=["string_example"],
)
⚙️ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes]
🔄 Return

Account

🌐 Endpoint

/integrations/data/crm/accounts/{id} get

🔙 Back to Table of Contents


carbon.crm.get_accounts

Get Accounts

🛠️ Usage
get_accounts_response = carbon.crm.get_accounts(
    data_source_id=1,
    include_remote_data=False,
    next_cursor="string_example",
    page_size=1,
    order_dir="asc",
    includes=[],
    filters={},
    order_by="created_at",
)
⚙️ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes]
filters: AccountFilters
order_by: AccountsOrderByNullable
⚙️ Request Body

AccountsRequest

🔄 Return

AccountResponse

🌐 Endpoint

/integrations/data/crm/accounts post

🔙 Back to Table of Contents


carbon.crm.get_contact

Get Contact

🛠️ Usage
get_contact_response = carbon.crm.get_contact(
    id="id_example",
    data_source_id=1,
    include_remote_data=False,
    includes=["string_example"],
)
⚙️ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes]
🔄 Return

Contact

🌐 Endpoint

/integrations/data/crm/contacts/{id} get

🔙 Back to Table of Contents


carbon.crm.get_contacts

Get Contacts

🛠️ Usage
get_contacts_response = carbon.crm.get_contacts(
    data_source_id=1,
    include_remote_data=False,
    next_cursor="string_example",
    page_size=1,
    order_dir="asc",
    includes=[],
    filters={},
    order_by="created_at",
)
⚙️ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes]
filters: ContactFilters
order_by: ContactsOrderByNullable
⚙️ Request Body

ContactsRequest

🔄 Return

ContactsResponse

🌐 Endpoint

/integrations/data/crm/contacts post

🔙 Back to Table of Contents


carbon.crm.get_lead

Get Lead

🛠️ Usage
get_lead_response = carbon.crm.get_lead(
    id="id_example",
    data_source_id=1,
    include_remote_data=False,
    includes=["string_example"],
)
⚙️ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes]
🔄 Return

Lead

🌐 Endpoint

/integrations/data/crm/leads/{id} get

🔙 Back to Table of Contents


carbon.crm.get_leads

Get Leads

🛠️ Usage
get_leads_response = carbon.crm.get_leads(
    data_source_id=1,
    include_remote_data=False,
    next_cursor="string_example",
    page_size=1,
    order_dir="asc",
    includes=[],
    filters={},
    order_by="created_at",
)
⚙️ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes]
filters: LeadFilters
order_by: LeadsOrderByNullable
⚙️ Request Body

LeadsRequest

🔄 Return

LeadsResponse

🌐 Endpoint

/integrations/data/crm/leads post

🔙 Back to Table of Contents


carbon.crm.get_opportunities

Get Opportunities

🛠️ Usage
get_opportunities_response = carbon.crm.get_opportunities(
    data_source_id=1,
    include_remote_data=False,
    next_cursor="string_example",
    page_size=1,
    order_dir="asc",
    includes=[],
    filters={
        "status": "WON",
    },
    order_by="created_at",
)
⚙️ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes]
filters: OpportunityFilters
order_by: OpportunitiesOrderByNullable
⚙️ Request Body

OpportunitiesRequest

🔄 Return

OpportunitiesResponse

🌐 Endpoint

/integrations/data/crm/opportunities post

🔙 Back to Table of Contents


carbon.crm.get_opportunity

Get Opportunity

🛠️ Usage
get_opportunity_response = carbon.crm.get_opportunity(
    id="id_example",
    data_source_id=1,
    include_remote_data=False,
    includes=["string_example"],
)
⚙️ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes]
🔄 Return

Opportunity

🌐 Endpoint

/integrations/data/crm/opportunities/{id} get

🔙 Back to Table of Contents


carbon.data_sources.add_tags

Add Data Source Tags

🛠️ Usage
add_tags_response = carbon.data_sources.add_tags(
    tags={},
    data_source_id=1,
)
⚙️ Parameters
tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
data_source_id: int
⚙️ Request Body

AddDataSourceTagsInput

🔄 Return

OrganizationUserDataSourceAPI

🌐 Endpoint

/data_sources/tags/add post

🔙 Back to Table of Contents


carbon.data_sources.query

Data Sources

🛠️ Usage
query_response = carbon.data_sources.query(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    filters={
        "source": "GOOGLE_CLOUD_STORAGE",
    },
)
⚙️ Parameters
pagination: Pagination
order_by: OrganizationUserDataSourceOrderByColumns
order_dir: OrderDir
filters: OrganizationUserDataSourceFilters
⚙️ Request Body

OrganizationUserDataSourceQueryInput

🔄 Return

OrganizationUserDataSourceResponse

🌐 Endpoint

/data_sources post

🔙 Back to Table of Contents


carbon.data_sources.query_user_data_sources

User Data Sources

🛠️ Usage
query_user_data_sources_response = carbon.data_sources.query_user_data_sources(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    filters={
        "source": "GOOGLE_CLOUD_STORAGE",
    },
)
⚙️ Parameters
pagination: Pagination
order_by: OrganizationUserDataSourceOrderByColumns
order_dir: OrderDir
filters: OrganizationUserDataSourceFilters
⚙️ Request Body

OrganizationUserDataSourceQueryInput

🔄 Return

OrganizationUserDataSourceResponse

🌐 Endpoint

/user_data_sources post

🔙 Back to Table of Contents


carbon.data_sources.remove_tags

Remove Data Source Tags

🛠️ Usage
remove_tags_response = carbon.data_sources.remove_tags(
    data_source_id=1,
    tags_to_remove=[],
    remove_all_tags=False,
)
⚙️ Parameters
data_source_id: int
tags_to_remove: RemoveDataSourceTagsInputTagsToRemove
remove_all_tags: bool
⚙️ Request Body

RemoveDataSourceTagsInput

🔄 Return

OrganizationUserDataSourceAPI

🌐 Endpoint

/data_sources/tags/remove post

🔙 Back to Table of Contents


carbon.data_sources.revoke_access_token

Revoke Access Token

🛠️ Usage
revoke_access_token_response = carbon.data_sources.revoke_access_token(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: int
⚙️ Request Body

RevokeAccessTokenInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/revoke_access_token post

🔙 Back to Table of Contents


carbon.embeddings.get_documents

For pre-filtering documents, using tags_v2 is preferred to using tags (which is now deprecated). If both tags_v2 and tags are specified, tags is ignored. tags_v2 enables building complex filters through the use of "AND", "OR", and negation logic. Take the below input as an example:

{
    "OR": [
        {
            "key": "subject",
            "value": "holy-bible",
            "negate": false
        },
        {
            "key": "person-of-interest",
            "value": "jesus christ",
            "negate": false
        },
        {
            "key": "genre",
            "value": "religion",
            "negate": true
        }
        {
            "AND": [
                {
                    "key": "subject",
                    "value": "tao-te-ching",
                    "negate": false
                },
                {
                    "key": "author",
                    "value": "lao-tzu",
                    "negate": false
                }
            ]
        }
    ]
}

In this case, files will be filtered such that:

  1. "subject" = "holy-bible" OR
  2. "person-of-interest" = "jesus christ" OR
  3. "genre" != "religion" OR
  4. "subject" = "tao-te-ching" AND "author" = "lao-tzu"

Note that the top level of the query must be either an "OR" or "AND" array. Currently, nesting is limited to 3. For tag blocks (those with "key", "value", and "negate" keys), the following typing rules apply:

  1. "key" isn't optional and must be a string
  2. "value" isn't optional and can be any or list[any]
  3. "negate" is optional and must be true or false. If present and true, then the filter block is negated in the resulting query. It is false by default.

When querying embeddings, you can optionally specify the media_type parameter in your request. By default (if not set), it is equal to "TEXT". This means that the query will be performed over files that have been parsed as text (for now, this covers all files except image files). If it is equal to "IMAGE", the query will be performed over image files (for now, .jpg and .png files). You can think of this field as an additional filter on top of any filters set in file_ids and

When hybrid_search is set to true, a combination of keyword search and semantic search are used to rank and select candidate embeddings during information retrieval. By default, these search methods are weighted equally during the ranking process. To adjust the weight (or "importance") of each search method, you can use the hybrid_search_tuning_parameters property. The description for the different tuning parameters are:

  • weight_a: weight to assign to semantic search
  • weight_b: weight to assign to keyword search

You must ensure that sum(weight_a, weight_b,..., weight_n) for all n weights is equal to 1. The equality has an error tolerance of 0.001 to account for possible floating point issues.

In order to use hybrid search for a customer across a set of documents, two flags need to be enabled:

  1. Use the /modify_user_configuration endpoint to to enable sparse_vectors for the customer. The payload body for this request is below:
{
  "configuration_key_name": "sparse_vectors",
  "value": {
    "enabled": true
  }
}
  1. Make sure hybrid search is enabled for the documents across which you want to perform the search. For the /uploadfile endpoint, this can be done by setting the following query parameter: generate_sparse_vectors=true

Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's multimodal model; for text, we support OpenAI's text-embedding-ada-002 and Cohere's embed-multilingual-v3.0. The model can be specified via the embedding_model parameter (in the POST body for /embeddings, and a query parameter in /uploadfile). If no model is supplied, the text-embedding-ada-002 is used by default. When performing embedding queries, embeddings from files that used the specified model will be considered in the query. For example, if files A and B have embeddings generated with OPENAI, and files C and D have embeddings generated with COHERE_MULTILINGUAL_V3, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3 is specified as the embedding_model in /embeddings, then only files C and D will be considered. Make sure that the set of all files you want considered for a query have embeddings generated via the same model. For now, do not set VERTEX_MULTIMODAL as an embedding_model. This model is used automatically by Carbon when it detects an image file.

🛠️ Usage
get_documents_response = carbon.embeddings.get_documents(
    query="a",
    k=1,
    tags={
        "key": "string_example",
    },
    query_vector=[3.14],
    file_ids=[1],
    parent_file_ids=[1],
    include_all_children=False,
    tags_v2={},
    include_tags=True,
    include_vectors=True,
    include_raw_file=True,
    hybrid_search=True,
    hybrid_search_tuning_parameters={
        "weight_a": 0.5,
        "weight_b": 0.5,
    },
    media_type="TEXT",
    embedding_model="OPENAI",
    include_file_level_metadata=False,
    high_accuracy=False,
    rerank={
        "model": "model_example",
    },
    file_types_at_source=["string_example"],
    exclude_cold_storage_files=False,
)
⚙️ Parameters
query: str

Query for which to get related chunks and embeddings.

k: int

Number of related chunks to return.

tags: GetEmbeddingDocumentsBodyTags
query_vector: GetEmbeddingDocumentsBodyQueryVector
file_ids: GetEmbeddingDocumentsBodyFileIds
parent_file_ids: GetEmbeddingDocumentsBodyParentFileIds
include_all_children: bool

Flag to control whether or not to include all children of filtered files in the embedding search.

tags_v2: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]

A set of tags to limit the search to. Use this instead of tags, which is deprecated.

include_tags: Optional[bool]

Flag to control whether or not to include tags for each chunk in the response.

include_vectors: Optional[bool]

Flag to control whether or not to include embedding vectors in the response.

include_raw_file: Optional[bool]

Flag to control whether or not to include a signed URL to the raw file containing each chunk in the response.

hybrid_search: Optional[bool]

Flag to control whether or not to perform hybrid search.

hybrid_search_tuning_parameters: HybridSearchTuningParamsNullable
media_type: FileContentTypesNullable
embedding_model: EmbeddingGeneratorsNullable
include_file_level_metadata: Optional[bool]

Flag to control whether or not to include file-level metadata in the response. This metadata will be included in the content_metadata field of each document along with chunk/embedding level metadata.

high_accuracy: Optional[bool]

Flag to control whether or not to perform a high accuracy embedding search. By default, this is set to false. If true, the search may return more accurate results, but may take longer to complete.

rerank: RerankParamsNullable
file_types_at_source: GetEmbeddingDocumentsBodyFileTypesAtSource
exclude_cold_storage_files: bool

Flag to control whether or not to exclude files that are not in hot storage. If set to False, then an error will be returned if any filtered files are in cold storage.

⚙️ Request Body

GetEmbeddingDocumentsBody

🔄 Return

DocumentResponseList

🌐 Endpoint

/embeddings post

🔙 Back to Table of Contents


carbon.embeddings.get_embeddings_and_chunks

Retrieve Embeddings And Content

🛠️ Usage
get_embeddings_and_chunks_response = carbon.embeddings.get_embeddings_and_chunks(
    filters={
        "user_file_id": 1,
        "embedding_model": "OPENAI",
    },
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    include_vectors=False,
)
⚙️ Parameters
filters: EmbeddingsAndChunksFilters
pagination: Pagination
order_by: EmbeddingsAndChunksOrderByColumns
order_dir: OrderDir
include_vectors: bool
⚙️ Request Body

EmbeddingsAndChunksQueryInput

🔄 Return

EmbeddingsAndChunksResponse

🌐 Endpoint

/text_chunks post

🔙 Back to Table of Contents


carbon.embeddings.list

Retrieve Embeddings And Content V2

🛠️ Usage
list_response = carbon.embeddings.list(
    filters={
        "include_all_children": False,
        "non_synced_only": False,
    },
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    include_vectors=False,
)
⚙️ Parameters
filters: OrganizationUserFilesToSyncFilters
pagination: Pagination
order_by: OrganizationUserFilesToSyncOrderByTypes
order_dir: OrderDir
include_vectors: bool
⚙️ Request Body

EmbeddingsAndChunksQueryInputV2

🔄 Return

EmbeddingsAndChunksResponse

🌐 Endpoint

/list_chunks_and_embeddings post

🔙 Back to Table of Contents


carbon.embeddings.upload_chunks_and_embeddings

Upload Chunks And Embeddings

🛠️ Usage
upload_chunks_and_embeddings_response = carbon.embeddings.upload_chunks_and_embeddings(
    embedding_model="OPENAI",
    chunks_and_embeddings=[
        {
            "file_id": 1,
            "chunks_and_embeddings": [
                {
                    "chunk_number": 1,
                    "chunk": "chunk_example",
                }
            ],
        }
    ],
    overwrite_existing=False,
    chunks_only=False,
    custom_credentials={
        "key": {},
    },
)
⚙️ Parameters
embedding_model: EmbeddingGenerators
chunks_and_embeddings: List[SingleChunksAndEmbeddingsUploadInput]
overwrite_existing: bool
chunks_only: bool
custom_credentials: ChunksAndEmbeddingsUploadInputCustomCredentials
⚙️ Request Body

ChunksAndEmbeddingsUploadInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/upload_chunks_and_embeddings post

🔙 Back to Table of Contents


carbon.files.create_user_file_tags

A tag is a key-value pair that can be added to a file. This pair can then be used for searches (e.g. embedding searches) in order to narrow down the scope of the search. A file can have any number of tags. The following are reserved keys that cannot be used:

  • db_embedding_id
  • organization_id
  • user_id
  • organization_user_file_id

Carbon currently supports two data types for tag values - string and list<string>. Keys can only be string. If values other than string and list<string> are used, they're automatically converted to strings (e.g. 4 will become "4").

🛠️ Usage
create_user_file_tags_response = carbon.files.create_user_file_tags(
    tags={
        "key": "string_example",
    },
    organization_user_file_id=1,
)
⚙️ Parameters
tags: OrganizationUserFileTagCreateTags
organization_user_file_id: int
⚙️ Request Body

OrganizationUserFileTagCreate

🔄 Return

UserFile

🌐 Endpoint

/create_user_file_tags post

🔙 Back to Table of Contents


carbon.files.delete_file_tags

Delete File Tags

🛠️ Usage
delete_file_tags_response = carbon.files.delete_file_tags(
    tags=["string_example"],
    organization_user_file_id=1,
)
⚙️ Parameters
tags: OrganizationUserFileTagsRemoveTags
organization_user_file_id: int
⚙️ Request Body

OrganizationUserFileTagsRemove

🔄 Return

UserFile

🌐 Endpoint

/delete_user_file_tags post

🔙 Back to Table of Contents


carbon.files.delete_many

Deprecated

Delete Files Endpoint

🛠️ Usage
delete_many_response = carbon.files.delete_many(
    file_ids=[1],
    sync_statuses=["string_example"],
    delete_non_synced_only=False,
    send_webhook=False,
    delete_child_files=False,
)
⚙️ Parameters
file_ids: DeleteFilesQueryInputFileIds
sync_statuses: List[ExternalFileSyncStatuses]
delete_non_synced_only: bool
send_webhook: bool
delete_child_files: bool
⚙️ Request Body

DeleteFilesQueryInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/delete_files post

🔙 Back to Table of Contents


carbon.files.delete_v2

Delete Files V2 Endpoint

🛠️ Usage
delete_v2_response = carbon.files.delete_v2(
    filters={
        "include_all_children": False,
        "non_synced_only": False,
    },
    send_webhook=False,
    preserve_file_record=False,
)
⚙️ Parameters
filters: OrganizationUserFilesToSyncFilters
send_webhook: bool
preserve_file_record: bool

Whether or not to delete all data related to the file from the database, BUT to preserve the file metadata, allowing for resyncs. By default preserve_file_record is false, which means that all data related to the file as well as its metadata will be deleted. Note that even if preserve_file_record is true, raw files uploaded via the uploadfile endpoint still cannot be resynced.

⚙️ Request Body

DeleteFilesV2QueryInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/delete_files_v2 post

🔙 Back to Table of Contents


carbon.files.get_parsed_file

Deprecated

This route is deprecated. Use /user_files_v2 instead.

🛠️ Usage
get_parsed_file_response = carbon.files.get_parsed_file(
    file_id=1,
)
⚙️ Parameters
file_id: int
🔄 Return

PresignedURLResponse

🌐 Endpoint

/parsed_file/{file_id} get

🔙 Back to Table of Contents


carbon.files.get_raw_file

Deprecated

This route is deprecated. Use /user_files_v2 instead.

🛠️ Usage
get_raw_file_response = carbon.files.get_raw_file(
    file_id=1,
)
⚙️ Parameters
file_id: int
🔄 Return

PresignedURLResponse

🌐 Endpoint

/raw_file/{file_id} get

🔙 Back to Table of Contents


carbon.files.modify_cold_storage_parameters

Modify Cold Storage Parameters

🛠️ Usage
modify_cold_storage_parameters_response = carbon.files.modify_cold_storage_parameters(
    filters={
        "include_all_children": False,
        "non_synced_only": False,
    },
    enable_cold_storage=True,
    hot_storage_time_to_live=1,
)
⚙️ Parameters
filters: OrganizationUserFilesToSyncFilters
enable_cold_storage: Optional[bool]
hot_storage_time_to_live: Optional[int]
⚙️ Request Body

ModifyColdStorageParametersQueryInput

🌐 Endpoint

/modify_cold_storage_parameters post

🔙 Back to Table of Contents


carbon.files.move_to_hot_storage

Move To Hot Storage

🛠️ Usage
move_to_hot_storage_response = carbon.files.move_to_hot_storage(
    filters={
        "include_all_children": False,
        "non_synced_only": False,
    },
)
⚙️ Parameters
filters: OrganizationUserFilesToSyncFilters
⚙️ Request Body

MoveToHotStorageQueryInput

🌐 Endpoint

/move_to_hot_storage post

🔙 Back to Table of Contents


carbon.files.query_user_files

For pre-filtering documents, using tags_v2 is preferred to using tags (which is now deprecated). If both tags_v2 and tags are specified, tags is ignored. tags_v2 enables building complex filters through the use of "AND", "OR", and negation logic. Take the below input as an example:

{
    "OR": [
        {
            "key": "subject",
            "value": "holy-bible",
            "negate": false
        },
        {
            "key": "person-of-interest",
            "value": "jesus christ",
            "negate": false
        },
        {
            "key": "genre",
            "value": "religion",
            "negate": true
        }
        {
            "AND": [
                {
                    "key": "subject",
                    "value": "tao-te-ching",
                    "negate": false
                },
                {
                    "key": "author",
                    "value": "lao-tzu",
                    "negate": false
                }
            ]
        }
    ]
}

In this case, files will be filtered such that:

  1. "subject" = "holy-bible" OR
  2. "person-of-interest" = "jesus christ" OR
  3. "genre" != "religion" OR
  4. "subject" = "tao-te-ching" AND "author" = "lao-tzu"

Note that the top level of the query must be either an "OR" or "AND" array. Currently, nesting is limited to 3. For tag blocks (those with "key", "value", and "negate" keys), the following typing rules apply:

  1. "key" isn't optional and must be a string
  2. "value" isn't optional and can be any or list[any]
  3. "negate" is optional and must be true or false. If present and true, then the filter block is negated in the resulting query. It is false by default.
🛠️ Usage
query_user_files_response = carbon.files.query_user_files(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    filters={
        "include_all_children": False,
        "non_synced_only": False,
    },
    include_raw_file=True,
    include_parsed_text_file=True,
    include_additional_files=True,
    presigned_url_expiry_time_seconds=3600,
)
⚙️ Parameters
pagination: Pagination
order_by: OrganizationUserFilesToSyncOrderByTypes
order_dir: OrderDir
filters: OrganizationUserFilesToSyncFilters
include_raw_file: Optional[bool]

If true, the query will return presigned URLs for the raw file. Only relevant for the /user_files_v2 endpoint.

include_parsed_text_file: Optional[bool]

If true, the query will return presigned URLs for the parsed text file. Only relevant for the /user_files_v2 endpoint.

include_additional_files: Optional[bool]

If true, the query will return presigned URLs for additional files. Only relevant for the /user_files_v2 endpoint.

presigned_url_expiry_time_seconds: int

The expiry time for the presigned URLs. Only relevant for the /user_files_v2 endpoint.

⚙️ Request Body

OrganizationUserFilesToSyncQueryInput

🔄 Return

UserFilesV2

🌐 Endpoint

/user_files_v2 post

🔙 Back to Table of Contents


carbon.files.query_user_files_deprecated

Deprecated

This route is deprecated. Use /user_files_v2 instead.

🛠️ Usage
query_user_files_deprecated_response = carbon.files.query_user_files_deprecated(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    filters={
        "include_all_children": False,
        "non_synced_only": False,
    },
    include_raw_file=True,
    include_parsed_text_file=True,
    include_additional_files=True,
    presigned_url_expiry_time_seconds=3600,
)
⚙️ Parameters
pagination: Pagination
order_by: OrganizationUserFilesToSyncOrderByTypes
order_dir: OrderDir
filters: OrganizationUserFilesToSyncFilters
include_raw_file: Optional[bool]

If true, the query will return presigned URLs for the raw file. Only relevant for the /user_files_v2 endpoint.

include_parsed_text_file: Optional[bool]

If true, the query will return presigned URLs for the parsed text file. Only relevant for the /user_files_v2 endpoint.

include_additional_files: Optional[bool]

If true, the query will return presigned URLs for additional files. Only relevant for the /user_files_v2 endpoint.

presigned_url_expiry_time_seconds: int

The expiry time for the presigned URLs. Only relevant for the /user_files_v2 endpoint.

⚙️ Request Body

OrganizationUserFilesToSyncQueryInput

🔄 Return

FilesQueryUserFilesDeprecatedResponse

🌐 Endpoint

/user_files post

🔙 Back to Table of Contents


carbon.files.resync

Resync File

🛠️ Usage
resync_response = carbon.files.resync(
    file_id=1,
    chunk_size=1,
    chunk_overlap=1,
    force_embedding_generation=False,
    skip_file_processing=False,
)
⚙️ Parameters
file_id: int
chunk_size: Optional[int]
chunk_overlap: Optional[int]
force_embedding_generation: bool
skip_file_processing: Optional[bool]
⚙️ Request Body

ResyncFileQueryInput

🔄 Return

UserFile

🌐 Endpoint

/resync_file post

🔙 Back to Table of Contents


carbon.files.upload

This endpoint is used to directly upload local files to Carbon. The POST request should be a multipart form request. Note that the set_page_as_boundary query parameter is applicable only to PDFs for now. When this value is set, PDF chunks are at most one page long. Additional information can be retrieved for each chunk, however, namely the coordinates of the bounding box around the chunk (this can be used for things like text highlighting). Following is a description of all possible query parameters:

  • chunk_size: the chunk size (in tokens) applied when splitting the document
  • chunk_overlap: the chunk overlap (in tokens) applied when splitting the document
  • skip_embedding_generation: whether or not to skip the generation of chunks and embeddings
  • set_page_as_boundary: described above
  • embedding_model: the model used to generate embeddings for the document chunks
  • use_ocr: whether or not to use OCR as a preprocessing step prior to generating chunks. Valid for PDFs, JPEGs, and PNGs
  • generate_sparse_vectors: whether or not to generate sparse vectors for the file. Required for hybrid search.
  • prepend_filename_to_chunks: whether or not to prepend the filename to the chunk text

Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's multimodal model; for text, we support OpenAI's text-embedding-ada-002 and Cohere's embed-multilingual-v3.0. The model can be specified via the embedding_model parameter (in the POST body for /embeddings, and a query parameter in /uploadfile). If no model is supplied, the text-embedding-ada-002 is used by default. When performing embedding queries, embeddings from files that used the specified model will be considered in the query. For example, if files A and B have embeddings generated with OPENAI, and files C and D have embeddings generated with COHERE_MULTILINGUAL_V3, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3 is specified as the embedding_model in /embeddings, then only files C and D will be considered. Make sure that the set of all files you want considered for a query have embeddings generated via the same model. For now, do not set VERTEX_MULTIMODAL as an embedding_model. This model is used automatically by Carbon when it detects an image file.

🛠️ Usage
upload_response = carbon.files.upload(
    file=open("/path/to/file", "rb"),
    chunk_size=1,
    chunk_overlap=1,
    skip_embedding_generation=False,
    set_page_as_boundary=False,
    embedding_model="string_example",
    use_ocr=False,
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    parse_pdf_tables_with_ocr=False,
    detect_audio_language=False,
    transcription_service="assemblyai",
    include_speaker_labels=False,
    media_type="TEXT",
    split_rows=False,
    enable_cold_storage=False,
    hot_storage_time_to_live=1,
    generate_chunks_only=False,
    store_file_only=False,
)
⚙️ Parameters
file: IO
chunk_size: Optional[int]

Chunk size in tiktoken tokens to be used when processing file.

chunk_overlap: Optional[int]

Chunk overlap in tiktoken tokens to be used when processing file.

skip_embedding_generation: bool

Flag to control whether or not embeddings should be generated and stored when processing file.

set_page_as_boundary: bool

Flag to control whether or not to set the a page's worth of content as the maximum amount of content that can appear in a chunk. Only valid for PDFs. See description route description for more information.

embedding_model: Union[TextEmbeddingGenerators, MultiModalEmbeddingGenerators]

Embedding model that will be used to embed file chunks.

use_ocr: bool

Whether or not to use OCR when processing files. Valid for PDFs, JPEGs, and PNGs. Useful for documents with tables, images, and/or scanned text.

generate_sparse_vectors: bool

Whether or not to generate sparse vectors for the file. This is required for the file to be a candidate for hybrid search.

prepend_filename_to_chunks: bool

Whether or not to prepend the file's name to chunks.

max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

parse_pdf_tables_with_ocr: bool

Whether to use rich table parsing when use_ocr is enabled.

detect_audio_language: bool

Whether to automatically detect the language of the uploaded audio file.

transcription_service: TranscriptionServiceNullable

The transcription service to use for audio files. If no service is specified, 'deepgram' will be used.

include_speaker_labels: bool

Detect multiple speakers and label segments of speech by speaker for audio files.

media_type: FileContentTypesNullable

The media type of the file. If not provided, it will be inferred from the file extension.

split_rows: bool

Whether to split tabular rows into chunks. Currently only valid for CSV, TSV, and XLSX files.

enable_cold_storage: bool

Enable cold storage for the file. If set to true, the file will be moved to cold storage after a certain period of inactivity. Default is false.

hot_storage_time_to_live: Optional[int]

Time in days after which the file will be moved to cold storage. Must be one of [1, 3, 7, 14, 30].

generate_chunks_only: bool

If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.

store_file_only: bool

If this flag is enabled, the file will be stored with Carbon, but no processing will be done.

⚙️ Request Body

BodyCreateUploadFileUploadfilePost

🔄 Return

UserFile

🌐 Endpoint

/uploadfile post

🔙 Back to Table of Contents


carbon.files.upload_from_url

Create Upload File From Url

🛠️ Usage
upload_from_url_response = carbon.files.upload_from_url(
    url="string_example",
    file_name="string_example",
    chunk_size=1,
    chunk_overlap=1,
    skip_embedding_generation=False,
    set_page_as_boundary=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    use_textract=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    parse_pdf_tables_with_ocr=False,
    detect_audio_language=False,
    transcription_service="assemblyai",
    include_speaker_labels=False,
    media_type="TEXT",
    split_rows=False,
    cold_storage_params={
        "enable_cold_storage": False,
    },
    generate_chunks_only=False,
    store_file_only=False,
)
⚙️ Parameters
url: str
file_name: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: bool
set_page_as_boundary: bool
embedding_model: EmbeddingGenerators
generate_sparse_vectors: bool
use_textract: bool
prepend_filename_to_chunks: bool
max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

parse_pdf_tables_with_ocr: bool
detect_audio_language: bool
transcription_service: TranscriptionServiceNullable
include_speaker_labels: bool
media_type: FileContentTypesNullable
split_rows: bool
cold_storage_params: ColdStorageProps
generate_chunks_only: bool

If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.

store_file_only: bool

If this flag is enabled, the file will be stored with Carbon, but no processing will be done.

⚙️ Request Body

UploadFileFromUrlInput

🔄 Return

UserFile

🌐 Endpoint

/upload_file_from_url post

🔙 Back to Table of Contents


carbon.files.upload_text

Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's multimodal model; for text, we support OpenAI's text-embedding-ada-002 and Cohere's embed-multilingual-v3.0. The model can be specified via the embedding_model parameter (in the POST body for /embeddings, and a query parameter in /uploadfile). If no model is supplied, the text-embedding-ada-002 is used by default. When performing embedding queries, embeddings from files that used the specified model will be considered in the query. For example, if files A and B have embeddings generated with OPENAI, and files C and D have embeddings generated with COHERE_MULTILINGUAL_V3, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3 is specified as the embedding_model in /embeddings, then only files C and D will be considered. Make sure that the set of all files you want considered for a query have embeddings generated via the same model. For now, do not set VERTEX_MULTIMODAL as an embedding_model. This model is used automatically by Carbon when it detects an image file.

🛠️ Usage
upload_text_response = carbon.files.upload_text(
    contents="aaaaa",
    name="string_example",
    chunk_size=1,
    chunk_overlap=1,
    skip_embedding_generation=False,
    overwrite_file_id=1,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    cold_storage_params={
        "enable_cold_storage": False,
    },
    generate_chunks_only=False,
    store_file_only=False,
)
⚙️ Parameters
contents: str
name: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: bool
overwrite_file_id: Optional[int]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
cold_storage_params: ColdStorageProps
generate_chunks_only: bool

If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.

store_file_only: bool

If this flag is enabled, the file will be stored with Carbon, but no processing will be done.

⚙️ Request Body

RawTextInput

🔄 Return

UserFile

🌐 Endpoint

/upload_text post

🔙 Back to Table of Contents


carbon.github.get_issue

Issue

🛠️ Usage
get_issue_response = carbon.github.get_issue(
    issue_number=1,
    include_remote_data=False,
    data_source_id=1,
    repository="string_example",
)
⚙️ Parameters
issue_number: int
include_remote_data: bool
data_source_id: int
repository: str
🔄 Return

Issue

🌐 Endpoint

/integrations/data/github/issues/{issue_number} get

🔙 Back to Table of Contents


carbon.github.get_issues

Issues

🛠️ Usage
get_issues_response = carbon.github.get_issues(
    data_source_id=1,
    repository="string_example",
    include_remote_data=False,
    page=1,
    page_size=30,
    next_cursor="string_example",
    filters={
        "state": "closed",
    },
    order_by="created",
    order_dir="asc",
)
⚙️ Parameters
data_source_id: int
repository: str

Full name of the repository, denoted as {owner}/{repo}

include_remote_data: bool
page: int
page_size: int
next_cursor: Optional[str]
filters: IssuesFilter
order_by: IssuesOrderBy
order_dir: OrderDirV2Nullable
⚙️ Request Body

IssuesInput

🔄 Return

IssuesResponse

🌐 Endpoint

/integrations/data/github/issues post

🔙 Back to Table of Contents


carbon.github.get_pr

Get Pr

🛠️ Usage
get_pr_response = carbon.github.get_pr(
    pull_number=1,
    include_remote_data=False,
    data_source_id=1,
    repository="string_example",
)
⚙️ Parameters
pull_number: int
include_remote_data: bool
data_source_id: int
repository: str
🔄 Return

PullRequestExtended

🌐 Endpoint

/integrations/data/github/pull_requests/{pull_number} get

🔙 Back to Table of Contents


carbon.github.get_pr_comments

Pr Comments

🛠️ Usage
get_pr_comments_response = carbon.github.get_pr_comments(
    data_source_id=1,
    repository="string_example",
    pull_number=1,
    include_remote_data=False,
    page=1,
    page_size=30,
    next_cursor="string_example",
    order_by="created",
    order_dir="asc",
)
⚙️ Parameters
data_source_id: int
repository: str

Full name of the repository, denoted as {owner}/{repo}

pull_number: int
include_remote_data: bool
page: int
page_size: int
next_cursor: Optional[str]
order_by: CommentsOrderBy
order_dir: OrderDirV2Nullable
⚙️ Request Body

CommentsInput

🔄 Return

CommentsResponse

🌐 Endpoint

/integrations/data/github/pull_requests/comments post

🔙 Back to Table of Contents


carbon.github.get_pr_commits

Pr Commits

🛠️ Usage
get_pr_commits_response = carbon.github.get_pr_commits(
    data_source_id=1,
    repository="string_example",
    pull_number=1,
    include_remote_data=False,
    page=1,
    page_size=30,
    next_cursor="string_example",
)
⚙️ Parameters
data_source_id: int
repository: str

Full name of the repository, denoted as {owner}/{repo}

pull_number: int
include_remote_data: bool
page: int
page_size: int
next_cursor: Optional[str]
⚙️ Request Body

CommitsInput

🔄 Return

CommitsResponse

🌐 Endpoint

/integrations/data/github/pull_requests/commits post

🔙 Back to Table of Contents


carbon.github.get_pr_files

Pr Files

🛠️ Usage
get_pr_files_response = carbon.github.get_pr_files(
    data_source_id=1,
    repository="string_example",
    pull_number=1,
    include_remote_data=False,
    page=1,
    page_size=30,
    next_cursor="string_example",
)
⚙️ Parameters
data_source_id: int
repository: str

Full name of the repository, denoted as {owner}/{repo}

pull_number: int
include_remote_data: bool
page: int
page_size: int
next_cursor: Optional[str]
⚙️ Request Body

FilesInput

🔄 Return

FilesResponse

🌐 Endpoint

/integrations/data/github/pull_requests/files post

🔙 Back to Table of Contents


carbon.github.get_pull_requests

Get Prs

🛠️ Usage
get_pull_requests_response = carbon.github.get_pull_requests(
    data_source_id=1,
    repository="string_example",
    include_remote_data=False,
    page=1,
    page_size=30,
    next_cursor="string_example",
    filters={
        "state": "closed",
    },
    order_by="created",
    order_dir="asc",
)
⚙️ Parameters
data_source_id: int
repository: str

Full name of the repository, denoted as {owner}/{repo}

include_remote_data: bool
page: int
page_size: int
next_cursor: Optional[str]
filters: PullRequestFilters
order_by: PROrderBy
order_dir: OrderDirV2Nullable
⚙️ Request Body

PullRequestsInput

🔄 Return

PullRequestResponse

🌐 Endpoint

/integrations/data/github/pull_requests post

🔙 Back to Table of Contents


carbon.integrations.cancel

Cancel Data Source Items Sync

🛠️ Usage
cancel_response = carbon.integrations.cancel(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: int
⚙️ Request Body

SyncDirectoryRequest

🔄 Return

OrganizationUserDataSourceAPI

🌐 Endpoint

/integrations/items/sync/cancel post

🔙 Back to Table of Contents


carbon.integrations.connect_data_source

Connect Data Source

🛠️ Usage
connect_data_source_response = carbon.integrations.connect_data_source(
    authentication={
        "source": "GOOGLE_DRIVE",
        "access_token": "access_token_example",
    },
    sync_options={
        "chunk_size": 1500,
        "chunk_overlap": 20,
        "skip_embedding_generation": False,
        "embedding_model": "OPENAI",
        "generate_sparse_vectors": False,
        "prepend_filename_to_chunks": False,
        "sync_files_on_connection": True,
        "set_page_as_boundary": False,
        "enable_file_picker": True,
        "sync_source_items": True,
        "incremental_sync": False,
    },
)
⚙️ Parameters
authentication: Union[OAuthAuthentication, NotionAuthentication, OneDriveAuthentication, SharepointAuthentication, ConfluenceAuthentication, ZendeskAuthentication, ZoteroAuthentication, GitbookAuthetication, SalesforceAuthentication, FreskdeskAuthentication, S3Authentication, AzureBlobStorageAuthentication, GithubAuthentication, ServiceNowAuthentication, GuruAuthentication, GongAuthentication]
sync_options: SyncOptions
⚙️ Request Body

ConnectDataSourceInput

🔄 Return

ConnectDataSourceResponse

🌐 Endpoint

/integrations/connect post

🔙 Back to Table of Contents


carbon.integrations.connect_document360

You will need an access token to connect your Document360 account. To obtain an access token, follow the steps highlighted here https://apidocs.document360.com/apidocs/api-token.

🛠️ Usage
connect_document360_response = carbon.integrations.connect_document360(
    account_email="string_example",
    access_token="string_example",
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    sync_files_on_connection=True,
    request_id="string_example",
    sync_source_items=True,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    data_source_tags={},
)
⚙️ Parameters
account_email: str

This email will be used to identify your carbon data source. It should have access to the Document360 account you wish to connect.

access_token: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

file_sync_config: FileSyncConfigNullable
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

Document360ConnectRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/document360 post

🔙 Back to Table of Contents


carbon.integrations.connect_freshdesk

Refer this article to obtain an API key https://support.freshdesk.com/en/support/solutions/articles/215517. Make sure that your API key has the permission to read solutions from your account and you are on a paid plan. Once you have an API key, you can make a request to this endpoint along with your freshdesk domain. This will trigger an automatic sync of the articles in your "solutions" tab. Additional parameters below can be used to associate data with the synced articles or modify the sync behavior.

🛠️ Usage
connect_freshdesk_response = carbon.integrations.connect_freshdesk(
    domain="string_example",
    api_key="string_example",
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    sync_files_on_connection=True,
    request_id="string_example",
    sync_source_items=True,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    data_source_tags={},
)
⚙️ Parameters
domain: str
api_key: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

file_sync_config: FileSyncConfigNullable
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

FreshDeskConnectRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/freshdesk post

🔙 Back to Table of Contents


carbon.integrations.connect_gitbook

You will need an access token to connect your Gitbook account. Note that the permissions will be defined by the user generating access token so make sure you have the permission to access spaces you will be syncing. Refer this article for more details https://developer.gitbook.com/gitbook-api/authentication. Additionally, you need to specify the name of organization you will be syncing data from.

🛠️ Usage
connect_gitbook_response = carbon.integrations.connect_gitbook(
    organization="string_example",
    access_token="string_example",
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    sync_files_on_connection=True,
    request_id="string_example",
    sync_source_items=True,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    data_source_tags={},
)
⚙️ Parameters
organization: str
access_token: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

file_sync_config: FileSyncConfigNullable
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

GitbookConnectRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/gitbook post

🔙 Back to Table of Contents


carbon.integrations.connect_guru

You will need an access token to connect your Guru account. To obtain an access token, follow the steps highlighted here https://help.getguru.com/docs/gurus-api#obtaining-a-user-token. The username should be your Guru username.

🛠️ Usage
connect_guru_response = carbon.integrations.connect_guru(
    username="string_example",
    access_token="string_example",
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    sync_files_on_connection=True,
    request_id="string_example",
    sync_source_items=True,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    data_source_tags={},
)
⚙️ Parameters
username: str
access_token: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

file_sync_config: FileSyncConfigNullable
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

GuruConnectRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/guru post

🔙 Back to Table of Contents


carbon.integrations.create_aws_iam_user

This endpoint can be used to connect S3 as well as Digital Ocean Spaces (S3 compatible)
For S3, create a new IAM user with permissions to:

  1. List all buckets.
  2. Read from the specific buckets and objects to sync with Carbon. Ensure any future buckets or objects carry the same permissions.
Once created, generate an access key for this user and share the credentials with us. We recommend testing this key beforehand. For Digital Ocean Spaces, generate the above credentials in your Applications and API page here https://cloud.digitalocean.com/account/api/spaces. Endpoint URL is required to connect Digital Ocean Spaces. It should look like <>.digitaloceanspaces.com
🛠️ Usage
create_aws_iam_user_response = carbon.integrations.create_aws_iam_user(
    access_key="string_example",
    access_key_secret="string_example",
    sync_source_items=True,
    endpoint_url="string_example",
    data_source_tags={},
)
⚙️ Parameters
access_key: str
access_key_secret: str
sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

endpoint_url: Optional[str]

You can specify a Digital Ocean endpoint URL to connect a Digital Ocean Space through this endpoint. The URL should be of format .digitaloceanspaces.com. It's not required for S3 buckets.

data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

S3AuthRequest

🔄 Return

OrganizationUserDataSourceAPI

🌐 Endpoint

/integrations/s3 post

🔙 Back to Table of Contents


carbon.integrations.get_oauth_url

This endpoint can be used to generate the following URLs

  • An OAuth URL for OAuth based connectors
  • A file syncing URL which skips the OAuth flow if the user already has a valid access token and takes them to the success state.
🛠️ Usage
get_oauth_url_response = carbon.integrations.get_oauth_url(
    service="BOX",
    tags=None,
    scope="string_example",
    scopes=[],
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    zendesk_subdomain="string_example",
    microsoft_tenant="string_example",
    sharepoint_site_name="string_example",
    confluence_subdomain="string_example",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    salesforce_domain="string_example",
    sync_files_on_connection=True,
    set_page_as_boundary=False,
    data_source_id=1,
    connecting_new_account=False,
    request_id="string_example",
    use_ocr=False,
    parse_pdf_tables_with_ocr=False,
    enable_file_picker=True,
    sync_source_items=True,
    incremental_sync=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    automatically_open_file_picker=True,
    gong_account_email="string_example",
    servicenow_credentials={
        "instance_subdomain": "instance_subdomain_example",
        "client_id": "client_id_example",
        "client_secret": "client_secret_example",
        "redirect_uri": "redirect_uri_example",
    },
    data_source_tags={},
)
⚙️ Parameters
service: OauthBasedConnectors
tags: Union[bool, date, datetime, dict, float, int, list, str, None]
scope: Optional[str]
scopes: OAuthURLRequestScopes
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
zendesk_subdomain: Optional[str]
microsoft_tenant: Optional[str]
sharepoint_site_name: Optional[str]
confluence_subdomain: Optional[str]
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

salesforce_domain: Optional[str]
sync_files_on_connection: Optional[bool]

Used to specify whether Carbon should attempt to sync all your files automatically when authorization is complete. This is only supported for a subset of connectors and will be ignored for the rest. Supported connectors: Intercom, Zendesk, Gitbook, Confluence, Salesforce, Freshdesk

set_page_as_boundary: bool
data_source_id: Optional[int]

Used to specify a data source to sync from if you have multiple connected. It can be skipped if you only have one data source of that type connected or are connecting a new account.

connecting_new_account: Optional[bool]

Used to connect a new data source. If not specified, we will attempt to create a sync URL for an existing data source based on type and ID.

request_id: Optional[str]

This request id will be added to all files that get synced using the generated OAuth URL

use_ocr: Optional[bool]

Enable OCR for files that support it. Supported formats: pdf, png, jpg

parse_pdf_tables_with_ocr: Optional[bool]
enable_file_picker: bool

Enable integration's file picker for sources that support it. Supported sources: BOX, DROPBOX, GOOGLE_DRIVE, ONEDRIVE, SHAREPOINT

sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

incremental_sync: bool

Only sync files if they have not already been synced or if the embedding properties have changed. This flag is currently supported by ONEDRIVE, GOOGLE_DRIVE, BOX, DROPBOX, INTERCOM, GMAIL, OUTLOOK, ZENDESK, CONFLUENCE, NOTION, SHAREPOINT, SERVICENOW. It will be ignored for other data sources.

file_sync_config: FileSyncConfigNullable
automatically_open_file_picker: Optional[bool]

Automatically open source file picker after the OAuth flow is complete. This flag is currently supported by BOX, DROPBOX, GOOGLE_DRIVE, ONEDRIVE, SHAREPOINT. It will be ignored for other data sources.

gong_account_email: Optional[str]

If you are connecting a Gong account, you need to input the email of the account you wish to connect. This email will be used to identify your carbon data source.

servicenow_credentials: ServiceNowCredentialsNullable
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

OAuthURLRequest

🔄 Return

OuthURLResponse

🌐 Endpoint

/integrations/oauth_url post

🔙 Back to Table of Contents


carbon.integrations.list_confluence_pages

Deprecated

This endpoint has been deprecated. Use /integrations/items/list instead.

To begin listing a user's Confluence pages, at least a data_source_id of a connected Confluence account must be specified. This base request returns a list of root pages for every space the user has access to in a Confluence instance. To traverse further down the user's page directory, additional requests to this endpoint can be made with the same data_source_id and with parent_id set to the id of page from a previous request. For convenience, the has_children property in each directory item in the response list will flag which pages will return non-empty lists of pages when set as the parent_id.

🛠️ Usage
list_confluence_pages_response = carbon.integrations.list_confluence_pages(
    data_source_id=1,
    parent_id="string_example",
)
⚙️ Parameters
data_source_id: int
parent_id: Optional[str]
⚙️ Request Body

ListRequest

🔄 Return

ListResponse

🌐 Endpoint

/integrations/confluence/list post

🔙 Back to Table of Contents


carbon.integrations.list_conversations

List all of your public and private channels, DMs, and Group DMs. The ID from response can be used as a filter to sync messages to Carbon
types: Comma separated list of types. Available types are im (DMs), mpim (group DMs), public_channel, and private_channel. Defaults to public_channel.
cursor: Used for pagination. If next_cursor is returned in response, you need to pass it as the cursor in the next request
data_source_id: Data source needs to be specified if you have linked multiple slack accounts
exclude_archived: Should archived conversations be excluded, defaults to true

🛠️ Usage
list_conversations_response = carbon.integrations.list_conversations(
    types="public_channel",
    cursor="string_example",
    data_source_id=1,
    exclude_archived=True,
)
⚙️ Parameters
types: str
cursor: Optional[str]
data_source_id: Optional[int]
exclude_archived: bool
🌐 Endpoint

/integrations/slack/conversations get

🔙 Back to Table of Contents


carbon.integrations.list_data_source_items

List Data Source Items

🛠️ Usage
list_data_source_items_response = carbon.integrations.list_data_source_items(
    data_source_id=1,
    parent_id="string_example",
    filters={},
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="name",
    order_dir="asc",
)
⚙️ Parameters
data_source_id: int
parent_id: Optional[str]
filters: ListItemsFiltersNullable
pagination: Pagination
order_by: ExternalSourceItemsOrderBy
order_dir: OrderDirV2
⚙️ Request Body

ListDataSourceItemsRequest

🔄 Return

ListDataSourceItemsResponse

🌐 Endpoint

/integrations/items/list post

🔙 Back to Table of Contents


carbon.integrations.list_folders

After connecting your Outlook account, you can use this endpoint to list all of your folders on outlook. This includes both system folders like "inbox" and user created folders.

🛠️ Usage
list_folders_response = carbon.integrations.list_folders(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: Optional[int]
🌐 Endpoint

/integrations/outlook/user_folders get

🔙 Back to Table of Contents


carbon.integrations.list_gitbook_spaces

After connecting your Gitbook account, you can use this endpoint to list all of your spaces under current organization.

🛠️ Usage
list_gitbook_spaces_response = carbon.integrations.list_gitbook_spaces(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: int
🌐 Endpoint

/integrations/gitbook/spaces get

🔙 Back to Table of Contents


carbon.integrations.list_labels

After connecting your Gmail account, you can use this endpoint to list all of your labels. User created labels will have the type "user" and Gmail's default labels will have the type "system"

🛠️ Usage
list_labels_response = carbon.integrations.list_labels(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: Optional[int]
🌐 Endpoint

/integrations/gmail/user_labels get

🔙 Back to Table of Contents


carbon.integrations.list_outlook_categories

After connecting your Outlook account, you can use this endpoint to list all of your categories on outlook. We currently support listing up to 250 categories.

🛠️ Usage
list_outlook_categories_response = carbon.integrations.list_outlook_categories(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: Optional[int]
🌐 Endpoint

/integrations/outlook/user_categories get

🔙 Back to Table of Contents


carbon.integrations.list_repos

Once you have connected your GitHub account, you can use this endpoint to list the repositories your account has access to. You can use a data source ID or username to fetch from a specific account.

🛠️ Usage
list_repos_response = carbon.integrations.list_repos(
    per_page=30,
    page=1,
    data_source_id=1,
)
⚙️ Parameters
per_page: int
page: int
data_source_id: Optional[int]
🌐 Endpoint

/integrations/github/repos get

🔙 Back to Table of Contents


carbon.integrations.list_sharepoint_sites

List all Sharepoint sites in the connected tenant. The site names from the response can be used as the site name when connecting a Sharepoint site. If site name is null in the response, then site name should be left null when connecting to the site.

This endpoint requires an additional Sharepoint scope: "Sites.Read.All". Include this scope along with the default Sharepoint scopes to list Sharepoint sites, connect to a site, and finally sync files from the site. The default Sharepoint scopes are: [o, p, e, n, i, d, , o, f, f, l, i, n, e, _, a, c, c, e, s, s, , U, s, e, r, ., R, e, a, d, , F, i, l, e, s, ., R, e, a, d, ., A, l, l].

data_soure_id: Data source needs to be specified if you have linked multiple Sharepoint accounts cursor: Used for pagination. If next_cursor is returned in response, you need to pass it as the cursor in the next request

🛠️ Usage
list_sharepoint_sites_response = carbon.integrations.list_sharepoint_sites(
    data_source_id=1,
    cursor="string_example",
)
⚙️ Parameters
data_source_id: Optional[int]
cursor: Optional[str]
🌐 Endpoint

/integrations/sharepoint/sites/list get

🔙 Back to Table of Contents


carbon.integrations.sync_azure_blob_files

After optionally loading the items via /integrations/items/sync and integrations/items/list, use the container name and file name as the ID in this endpoint to sync them into Carbon. Additional parameters below can associate data with the selected items or modify the sync behavior

🛠️ Usage
sync_azure_blob_files_response = carbon.integrations.sync_azure_blob_files(
    ids=[{}],
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    set_page_as_boundary=False,
    data_source_id=1,
    request_id="string_example",
    use_ocr=False,
    parse_pdf_tables_with_ocr=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
)
⚙️ Parameters
ids: List[AzureBlobGetFileInput]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

set_page_as_boundary: bool
data_source_id: Optional[int]
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
file_sync_config: FileSyncConfigNullable
⚙️ Request Body

AzureBlobFileSyncInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/azure_blob_storage/files post

🔙 Back to Table of Contents


carbon.integrations.sync_azure_blob_storage

This endpoint can be used to connect Azure Blob Storage.

For Azure Blob Storage, follow these steps:

  1. Create a new Azure Storage account and grant the following permissions:
    • List containers.
    • Read from specific containers and blobs to sync with Carbon. Ensure any future containers or blobs carry the same permissions.
  2. Generate a shared access signature (SAS) token or an access key for the storage account.

Once created, provide us with the following details to generate the connection URL:

  1. Storage Account KeyName.
  2. Storage Account Name.
🛠️ Usage
sync_azure_blob_storage_response = carbon.integrations.sync_azure_blob_storage(
    account_name="string_example",
    account_key="string_example",
    sync_source_items=True,
    data_source_tags={},
)
⚙️ Parameters
account_name: str
account_key: str
sync_source_items: bool
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

AzureBlobAuthRequest

🔄 Return

OrganizationUserDataSourceAPI

🌐 Endpoint

/integrations/azure_blob_storage post

🔙 Back to Table of Contents


carbon.integrations.sync_confluence

Deprecated

This endpoint has been deprecated. Use /integrations/files/sync instead.

After listing pages in a user's Confluence account, the set of selected page ids and the connected account's data_source_id can be passed into this endpoint to sync them into Carbon. Additional parameters listed below can be used to associate data to the selected pages or alter the behavior of the sync.

🛠️ Usage
sync_confluence_response = carbon.integrations.sync_confluence(
    data_source_id=1,
    ids=["string_example"],
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    set_page_as_boundary=False,
    request_id="string_example",
    use_ocr=False,
    parse_pdf_tables_with_ocr=False,
    incremental_sync=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
)
⚙️ Parameters
data_source_id: int
ids: Union[List[str], List[SyncFilesIds]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

set_page_as_boundary: bool
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
incremental_sync: bool

Only sync files if they have not already been synced or if the embedding properties have changed. This flag is currently supported by ONEDRIVE, GOOGLE_DRIVE, BOX, DROPBOX, INTERCOM, GMAIL, OUTLOOK, ZENDESK, CONFLUENCE, NOTION, SHAREPOINT, SERVICENOW. It will be ignored for other data sources.

file_sync_config: FileSyncConfigNullable
⚙️ Request Body

SyncFilesRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/confluence/sync post

🔙 Back to Table of Contents


carbon.integrations.sync_data_source_items

Sync Data Source Items

🛠️ Usage
sync_data_source_items_response = carbon.integrations.sync_data_source_items(
    data_source_id=1,
)
⚙️ Parameters
data_source_id: int
⚙️ Request Body

SyncDirectoryRequest

🔄 Return

OrganizationUserDataSourceAPI

🌐 Endpoint

/integrations/items/sync post

🔙 Back to Table of Contents


carbon.integrations.sync_files

After listing files and folders via /integrations/items/sync and integrations/items/list, use the selected items' external ids as the ids in this endpoint to sync them into Carbon. Sharepoint items take an additional parameter root_id, which identifies the drive the file or folder is in and is stored in root_external_id. That additional paramter is optional and excluding it will tell the sync to assume the item is stored in the default Documents drive.

🛠️ Usage
sync_files_response = carbon.integrations.sync_files(
    data_source_id=1,
    ids=["string_example"],
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    set_page_as_boundary=False,
    request_id="string_example",
    use_ocr=False,
    parse_pdf_tables_with_ocr=False,
    incremental_sync=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
)
⚙️ Parameters
data_source_id: int
ids: Union[List[str], List[SyncFilesIds]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

set_page_as_boundary: bool
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
incremental_sync: bool

Only sync files if they have not already been synced or if the embedding properties have changed. This flag is currently supported by ONEDRIVE, GOOGLE_DRIVE, BOX, DROPBOX, INTERCOM, GMAIL, OUTLOOK, ZENDESK, CONFLUENCE, NOTION, SHAREPOINT, SERVICENOW. It will be ignored for other data sources.

file_sync_config: FileSyncConfigNullable
⚙️ Request Body

SyncFilesRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/files/sync post

🔙 Back to Table of Contents


carbon.integrations.sync_git_hub

Refer this article to obtain an access token https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens. Make sure that your access token has the permission to read content from your desired repos. Note that if your access token expires you will need to manually update it through this endpoint.

🛠️ Usage
sync_git_hub_response = carbon.integrations.sync_git_hub(
    username="string_example",
    access_token="string_example",
    sync_source_items=False,
    data_source_tags={},
)
⚙️ Parameters
username: str
access_token: str
sync_source_items: bool

Enabling this flag will fetch all available content from the source to be listed via list items endpoint

data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

GithubConnectRequest

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/github post

🔙 Back to Table of Contents


carbon.integrations.sync_gitbook

You can sync upto 20 Gitbook spaces at a time using this endpoint. Additional parameters below can be used to associate data with the synced pages or modify the sync behavior.

🛠️ Usage
sync_gitbook_response = carbon.integrations.sync_gitbook(
    space_ids=["string_example"],
    data_source_id=1,
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    request_id="string_example",
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
)
⚙️ Parameters
space_ids: GitbookSyncRequestSpaceIds
data_source_id: int
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
request_id: Optional[str]
file_sync_config: FileSyncConfigNullable
⚙️ Request Body

GitbookSyncRequest

🌐 Endpoint

/integrations/gitbook/sync post

🔙 Back to Table of Contents


carbon.integrations.sync_gmail

Once you have successfully connected your gmail account, you can choose which emails to sync with us using the filters parameter. Filters is a JSON object with key value pairs. It also supports AND and OR operations. For now, we support a limited set of keys listed below.

label: Inbuilt Gmail labels, for example "Important" or a custom label you created.
after or before: A date in YYYY/mm/dd format (example 2023/12/31). Gets emails after/before a certain date. You can also use them in combination to get emails from a certain period.
is: Can have the following values - starred, important, snoozed, and unread
from: Email address of the sender
to: Email address of the recipient
in: Can have the following values - sent (sync emails sent by the user)
has: Can have the following values - attachment (sync emails that have attachments)

Using keys or values outside of the specified values can lead to unexpected behaviour.

An example of a basic query with filters can be

{
    "filters": {
            "key": "label",
            "value": "Test"
        }
}

Which will list all emails that have the label "Test".

You can use AND and OR operation in the following way:

{
    "filters": {
        "AND": [
            {
                "key": "after",
                "value": "2024/01/07"
            },
            {
                "OR": [
                    {
                        "key": "label",
                        "value": "Personal"
                    },
                    {
                        "key": "is",
                        "value": "starred"
                    }
                ]
            }
        ]
    }
}

This will return emails after 7th of Jan that are either starred or have the label "Personal". Note that this is the highest level of nesting we support, i.e. you can't add more AND/OR filters within the OR filter in the above example.

🛠️ Usage
sync_gmail_response = carbon.integrations.sync_gmail(
    filters={},
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    data_source_id=1,
    request_id="string_example",
    sync_attachments=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    incremental_sync=False,
)
⚙️ Parameters
filters: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
data_source_id: Optional[int]
request_id: Optional[str]
sync_attachments: Optional[bool]
file_sync_config: FileSyncConfigNullable
incremental_sync: bool
⚙️ Request Body

GmailSyncInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/gmail/sync post

🔙 Back to Table of Contents


carbon.integrations.sync_outlook

Once you have successfully connected your Outlook account, you can choose which emails to sync with us using the filters and folder parameter. "folder" should be the folder you want to sync from Outlook. By default we get messages from your inbox folder.
Filters is a JSON object with key value pairs. It also supports AND and OR operations. For now, we support a limited set of keys listed below.

category: Custom categories that you created in Outlook.
after or before: A date in YYYY/mm/dd format (example 2023/12/31). Gets emails after/before a certain date. You can also use them in combination to get emails from a certain period.
is: Can have the following values: flagged
from: Email address of the sender

An example of a basic query with filters can be

{
    "filters": {
            "key": "category",
            "value": "Test"
        }
}

Which will list all emails that have the category "Test".

Specifying a custom folder in the same query

{
    "folder": "Folder Name",
    "filters": {
            "key": "category",
            "value": "Test"
        }
}

You can use AND and OR operation in the following way:

{
    "filters": {
        "AND": [
            {
                "key": "after",
                "value": "2024/01/07"
            },
            {
                "OR": [
                    {
                        "key": "category",
                        "value": "Personal"
                    },
                    {
                        "key": "category",
                        "value": "Test"
                    },
                ]
            }
        ]
    }
}

This will return emails after 7th of Jan that have either Personal or Test as category. Note that this is the highest level of nesting we support, i.e. you can't add more AND/OR filters within the OR filter in the above example.

🛠️ Usage
sync_outlook_response = carbon.integrations.sync_outlook(
    filters={},
    tags={},
    folder="Inbox",
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    data_source_id=1,
    request_id="string_example",
    sync_attachments=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
    incremental_sync=False,
)
⚙️ Parameters
filters: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
folder: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
data_source_id: Optional[int]
request_id: Optional[str]
sync_attachments: Optional[bool]
file_sync_config: FileSyncConfigNullable
incremental_sync: bool
⚙️ Request Body

OutlookSyncInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/outlook/sync post

🔙 Back to Table of Contents


carbon.integrations.sync_repos

You can retreive repos your token has access to using /integrations/github/repos and sync their content. You can also pass full name of any public repository (username/repo-name). This will store the repo content with carbon which can be accessed through /integrations/items/list endpoint. Maximum of 25 repositories are accepted per request.

🛠️ Usage
sync_repos_response = carbon.integrations.sync_repos(
    repos=["string_example"],
    data_source_id=1,
)
⚙️ Parameters
repos: GithubFetchReposRequestRepos
data_source_id: Optional[int]
⚙️ Request Body

GithubFetchReposRequest

🌐 Endpoint

/integrations/github/sync_repos post

🔙 Back to Table of Contents


carbon.integrations.sync_rss_feed

Rss Feed

🛠️ Usage
sync_rss_feed_response = carbon.integrations.sync_rss_feed(
    url="string_example",
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    request_id="string_example",
    data_source_tags={},
)
⚙️ Parameters
url: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
request_id: Optional[str]
data_source_tags: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]

Tags to be associated with the data source. If the data source already has tags set, then an upsert will be performed.

⚙️ Request Body

RSSFeedInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/rss_feed post

🔙 Back to Table of Contents


carbon.integrations.sync_s3_files

After optionally loading the items via /integrations/items/sync and integrations/items/list, use the bucket name and object key as the ID in this endpoint to sync them into Carbon. Additional parameters below can associate data with the selected items or modify the sync behavior

🛠️ Usage
sync_s3_files_response = carbon.integrations.sync_s3_files(
    ids=[{}],
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    max_items_per_chunk=1,
    set_page_as_boundary=False,
    data_source_id=1,
    request_id="string_example",
    use_ocr=False,
    parse_pdf_tables_with_ocr=False,
    file_sync_config={
        "auto_synced_source_types": ["ARTICLE"],
        "sync_attachments": False,
        "detect_audio_language": False,
        "transcription_service": "assemblyai",
        "include_speaker_labels": False,
        "split_rows": False,
        "generate_chunks_only": False,
        "store_file_only": False,
        "skip_file_processing": False,
        "parsed_text_format": "PLAIN_TEXT",
    },
)
⚙️ Parameters
ids: List[S3GetFileInput]

Each input should be one of the following: A bucket name, a bucket name and a prefix, or a bucket name and an object key. A prefix is the common path for all objects you want to sync. Paths should end with a forward slash.

tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]

Number of objects per chunk. For csv, tsv, xlsx, and json files only.

set_page_as_boundary: bool
data_source_id: Optional[int]
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
file_sync_config: FileSyncConfigNullable
⚙️ Request Body

S3FileSyncInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/integrations/s3/files post

🔙 Back to Table of Contents


carbon.integrations.sync_slack

You can list all conversations using the endpoint /integrations/slack/conversations. The ID of conversation will be used as an input for this endpoint with timestamps as optional filters.

🛠️ Usage
sync_slack_response = carbon.integrations.sync_slack(
    filters={
        "conversation_id": "conversation_id_example",
    },
    tags={},
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    embedding_model="OPENAI",
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    data_source_id=1,
    request_id="string_example",
)
⚙️ Parameters
filters: SlackFilters
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
data_source_id: Optional[int]
request_id: Optional[str]
⚙️ Request Body

SlackSyncRequest

🌐 Endpoint

/integrations/slack/sync post

🔙 Back to Table of Contents


carbon.organizations.get

Get Organization

🛠️ Usage
get_response = carbon.organizations.get()
🔄 Return

OrganizationResponse

🌐 Endpoint

/organization get

🔙 Back to Table of Contents


carbon.organizations.update

Update Organization

🛠️ Usage
update_response = carbon.organizations.update(
    global_user_config={},
    data_source_configs={
        "key": {
            "allowed_file_formats": [],
        },
    },
)
⚙️ Parameters
global_user_config: UserConfigurationNullable
data_source_configs: UpdateOrganizationInputDataSourceConfigs
⚙️ Request Body

UpdateOrganizationInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/organization/update post

🔙 Back to Table of Contents


carbon.organizations.update_stats

Use this endpoint to reaggregate the statistics for an organization, for example aggregate_file_size. The reaggregation process is asyncronous so a webhook will be sent with the event type being FILE_STATISTICS_AGGREGATED to notify when the process is complee. After this aggregation is complete, the updated statistics can be retrieved using the /organization endpoint. The response of /organization willalso contain a timestamp of the last time the statistics were reaggregated.

🛠️ Usage
update_stats_response = carbon.organizations.update_stats()
🔄 Return

GenericSuccessResponse

🌐 Endpoint

/organization/statistics post

🔙 Back to Table of Contents


carbon.users.delete

Delete Users

🛠️ Usage
delete_response = carbon.users.delete(
    customer_ids=["string_example"],
)
⚙️ Parameters
customer_ids: DeleteUsersInputCustomerIds
⚙️ Request Body

DeleteUsersInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/delete_users post

🔙 Back to Table of Contents


carbon.users.get

User Endpoint

🛠️ Usage
get_response = carbon.users.get(
    customer_id="string_example",
)
⚙️ Parameters
customer_id: str
⚙️ Request Body

UserRequestContent

🔄 Return

UserResponse

🌐 Endpoint

/user post

🔙 Back to Table of Contents


carbon.users.list

List users within an organization

🛠️ Usage
list_response = carbon.users.list(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    filters={},
    order_by="created_at",
    order_dir="asc",
    include_count=False,
)
⚙️ Parameters
pagination: Pagination
filters: ListUsersFilters
order_by: ListUsersOrderByTypes
order_dir: OrderDirV2
include_count: bool
⚙️ Request Body

ListUsersRequest

🔄 Return

UserListResponse

🌐 Endpoint

/list_users post

🔙 Back to Table of Contents


carbon.users.toggle_user_features

Deprecated

Toggle User Features

🛠️ Usage
toggle_user_features_response = carbon.users.toggle_user_features(
    configuration_key_name="sparse_vectors",
    value={},
)
⚙️ Parameters
configuration_key_name: ConfigurationKeys
value: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
⚙️ Request Body

ModifyUserConfigurationInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/modify_user_configuration post

🔙 Back to Table of Contents


carbon.users.update_users

Update Users

🛠️ Usage
update_users_response = carbon.users.update_users(
    customer_ids=["string_example"],
    auto_sync_enabled_sources=["string_example"],
    max_files=-1,
    max_files_per_upload=-1,
    max_characters=-1,
    max_characters_per_file=-1,
    max_characters_per_upload=-1,
    auto_sync_interval=-1,
)
⚙️ Parameters
customer_ids: UpdateUsersInputCustomerIds
auto_sync_enabled_sources: Union[List[DataSourceType], DataSourceExtendedInput]

List of data source types to enable auto sync for. Empty array will remove all sources and the string \"ALL\" will enable it for all data sources

max_files: Optional[int]

Custom file upload limit for the user over all user's files across all uploads. If set, then the user will not be allowed to upload more files than this limit. If not set, or if set to -1, then the user will have no limit.

max_files_per_upload: Optional[int]

Custom file upload limit for the user across a single upload. If set, then the user will not be allowed to upload more files than this limit in a single upload. If not set, or if set to -1, then the user will have no limit.

max_characters: Optional[int]

Custom character upload limit for the user over all user's files across all uploads. If set, then the user will not be allowed to upload more characters than this limit. If not set, or if set to -1, then the user will have no limit.

max_characters_per_file: Optional[int]

A single file upload from the user can not exceed this character limit. If set, then the file will not be synced if it exceeds this limit. If not set, or if set to -1, then the user will have no limit.

max_characters_per_upload: Optional[int]

Custom character upload limit for the user across a single upload. If set, then the user won't be able to sync more than this many characters in one upload. If not set, or if set to -1, then the user will have no limit.

auto_sync_interval: Optional[int]

The interval in hours at which the user's data sources should be synced. If not set or set to -1, the user will be synced at the organization level interval or default interval if that is also not set. Must be one of [3, 6, 12, 24]

⚙️ Request Body

UpdateUsersInput

🔄 Return

GenericSuccessResponse

🌐 Endpoint

/update_users post

🔙 Back to Table of Contents


carbon.users.who_am_i

Me Endpoint

🛠️ Usage
who_am_i_response = carbon.users.who_am_i()
🔄 Return

UserResponse

🌐 Endpoint

/whoami get

🔙 Back to Table of Contents


carbon.utilities.fetch_urls

Deprecated

Extracts all URLs from a webpage.

Args: url (str): URL of the webpage

Returns: FetchURLsResponse: A response object with a list of URLs extracted from the webpage and the webpage content.

🛠️ Usage
fetch_urls_response = carbon.utilities.fetch_urls(
    url="url_example",
)
⚙️ Parameters
url: str
🔄 Return

FetchURLsResponse

🌐 Endpoint

/fetch_urls get

🔙 Back to Table of Contents


carbon.utilities.fetch_webpage

Fetch Urls V2

🛠️ Usage
fetch_webpage_response = carbon.utilities.fetch_webpage(
    url="string_example",
)
⚙️ Parameters
url: str
⚙️ Request Body

FetchURLsRequest

🌐 Endpoint

/fetch_webpage post

🔙 Back to Table of Contents


carbon.utilities.fetch_youtube_transcripts

Fetches english transcripts from YouTube videos.

Args: id (str): The ID of the YouTube video. raw (bool): Whether to return the raw transcript or not. Defaults to False.

Returns: dict: A dictionary with the transcript of the YouTube video.

🛠️ Usage
fetch_youtube_transcripts_response = carbon.utilities.fetch_youtube_transcripts(
    id="id_example",
    raw=False,
)
⚙️ Parameters
id: str
raw: bool
🔄 Return

YoutubeTranscriptResponse

🌐 Endpoint

/fetch_youtube_transcript get

🔙 Back to Table of Contents


carbon.utilities.process_sitemap

Retrieves all URLs from a sitemap, which can subsequently be utilized with our web_scrape endpoint.

🛠️ Usage
process_sitemap_response = carbon.utilities.process_sitemap(
    url="url_example",
)
⚙️ Parameters
url: str
🌐 Endpoint

/process_sitemap get

🔙 Back to Table of Contents


carbon.utilities.scrape_sitemap

Extracts all URLs from a sitemap and performs a web scrape on each of them.

Args: sitemap_url (str): URL of the sitemap

Returns: dict: A response object with the status of the scraping job message.-->

🛠️ Usage
scrape_sitemap_response = carbon.utilities.scrape_sitemap(
    url="string_example",
    tags={
        "key": "string_example",
    },
    max_pages_to_scrape=1,
    chunk_size=1500,
    chunk_overlap=20,
    skip_embedding_generation=False,
    enable_auto_sync=False,
    generate_sparse_vectors=False,
    prepend_filename_to_chunks=False,
    html_tags_to_skip=[],
    css_classes_to_skip=[],
    css_selectors_to_skip=[],
    embedding_model="OPENAI",
    url_paths_to_include=[],
    url_paths_to_exclude=[],
    urls_to_scrape=[],
    download_css_and_media=False,
    generate_chunks_only=False,
    store_file_only=False,
    use_premium_proxies=False,
)
⚙️ Parameters
url: str
tags: SitemapScrapeRequestTags
max_pages_to_scrape: Optional[int]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
enable_auto_sync: Optional[bool]
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
html_tags_to_skip: SitemapScrapeRequestHtmlTagsToSkip
css_classes_to_skip: SitemapScrapeRequestCssClassesToSkip
css_selectors_to_skip: SitemapScrapeRequestCssSelectorsToSkip
embedding_model: EmbeddingGenerators
url_paths_to_include: SitemapScrapeRequestUrlPathsToInclude
url_paths_to_exclude: SitemapScrapeRequestUrlPathsToExclude
urls_to_scrape: SitemapScrapeRequestUrlsToScrape
download_css_and_media: Optional[bool]

Whether the scraper should download css and media from the page (images, fonts, etc). Scrapes might take longer to finish with this flag enabled, but the success rate is improved.

generate_chunks_only: bool

If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.

store_file_only: bool

If this flag is enabled, the file will be stored with Carbon, but no processing will be done.

use_premium_proxies: bool

If the default proxies are blocked and not returning results, this flag can be enabled to use alternate proxies (residential and office). Scrapes might take longer to finish with this flag enabled.

⚙️ Request Body

SitemapScrapeRequest

🌐 Endpoint

/scrape_sitemap post

🔙 Back to Table of Contents


carbon.utilities.scrape_web

Conduct a web scrape on a given webpage URL. Our web scraper is fully compatible with JavaScript and supports recursion depth, enabling you to efficiently extract all content from the target website.

🛠️ Usage
scrape_web_response = carbon.utilities.scrape_web(
    body=[
        {
            "url": "url_example",
            "recursion_depth": 3,
            "max_pages_to_scrape": 100,
            "chunk_size": 1500,
            "chunk_overlap": 20,
            "skip_embedding_generation": False,
            "enable_auto_sync": False,
            "generate_sparse_vectors": False,
            "prepend_filename_to_chunks": False,
            "html_tags_to_skip": [],
            "css_classes_to_skip": [],
            "css_selectors_to_skip": [],
            "embedding_model": "OPENAI",
            "url_paths_to_include": [],
            "download_css_and_media": False,
            "generate_chunks_only": False,
            "store_file_only": False,
            "use_premium_proxies": False,
        }
    ],
)
⚙️ Request Body

UtilitiesScrapeWebRequest

🌐 Endpoint

/web_scrape post

🔙 Back to Table of Contents


carbon.utilities.search_urls

Perform a web search and obtain a list of relevant URLs.

As an illustration, when you perform a search for “content related to MRNA,” you will receive a list of links such as the following:

- https://tomrenz.substack.com/p/mrna-and-why-it-matters

- https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/

- https://www.statnews.com/2022/11/16/covid-19-vaccines-were-a-success-but-mrna-still-has-a-delivery-problem/

- https://joomi.substack.com/p/were-still-being-misled-about-how

Subsequently, you can submit these links to the web_scrape endpoint in order to retrieve the content of the respective web pages.

Args: query (str): Query to search for

Returns: FetchURLsResponse: A response object with a list of URLs for a given search query.

🛠️ Usage
search_urls_response = carbon.utilities.search_urls(
    query="query_example",
)
⚙️ Parameters
query: str
🔄 Return

FetchURLsResponse

🌐 Endpoint

/search_urls get

🔙 Back to Table of Contents


carbon.utilities.user_webpages

User Web Pages

🛠️ Usage
user_webpages_response = carbon.utilities.user_webpages(
    filters={},
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="asc",
)
⚙️ Parameters
filters: UserWebPagesFilters
pagination: Pagination
order_by: UserWebPageOrderByTypes
order_dir: OrderDirV2
⚙️ Request Body

UserWebPagesRequest

🌐 Endpoint

/user_webpages post

🔙 Back to Table of Contents


carbon.webhooks.add_url

Add Webhook Url

🛠️ Usage
add_url_response = carbon.webhooks.add_url(
    url="string_example",
)
⚙️ Parameters
url: str
⚙️ Request Body

AddWebhookProps

🔄 Return

Webhook

🌐 Endpoint

/add_webhook post

🔙 Back to Table of Contents


carbon.webhooks.delete_url

Delete Webhook Url

🛠️ Usage
delete_url_response = carbon.webhooks.delete_url(
    webhook_id=1,
)
⚙️ Parameters
webhook_id: int
🔄 Return

GenericSuccessResponse

🌐 Endpoint

/delete_webhook/{webhook_id} delete

🔙 Back to Table of Contents


carbon.webhooks.urls

Webhook Urls

🛠️ Usage
urls_response = carbon.webhooks.urls(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    filters={
        "ids": [],
    },
)
⚙️ Parameters
pagination: Pagination
order_by: WebhookOrderByColumns
order_dir: OrderDir
filters: WebhookFilters
⚙️ Request Body

WebhookQueryInput

🔄 Return

WebhookQueryResponse

🌐 Endpoint

/webhooks post

🔙 Back to Table of Contents


carbon.white_label.create

Create White Labels

🛠️ Usage
create_response = carbon.white_label.create(
    body=[
        {
            "data_source_type": "GOOGLE_DRIVE",
            "credentials": {
                "client_id": "client_id_example",
                "redirect_uri": "redirect_uri_example",
            },
        }
    ],
)
⚙️ Request Body

WhiteLabelCreateRequest

🌐 Endpoint

/white_label/create post

🔙 Back to Table of Contents


carbon.white_label.delete

Delete White Labels

🛠️ Usage
delete_response = carbon.white_label.delete(
    ids=[1],
)
⚙️ Parameters
ids: DeleteWhiteLabelRequestIds
⚙️ Request Body

DeleteWhiteLabelRequest

🌐 Endpoint

/white_label/delete post

🔙 Back to Table of Contents


carbon.white_label.list

List White Labels

🛠️ Usage
list_response = carbon.white_label.list(
    pagination={
        "limit": 10,
        "offset": 0,
        "starting_id": 0,
    },
    order_by="created_at",
    order_dir="desc",
    filters={
        "ids": [],
        "data_source_type": [],
    },
)
⚙️ Parameters
pagination: Pagination
order_by: WhiteLabelOrderByColumns
order_dir: OrderDir
filters: WhiteLabelFilters
⚙️ Request Body

ListWhiteLabelRequest

🌐 Endpoint

/white_label/list post

🔙 Back to Table of Contents


carbon.white_label.update

Update White Label

🛠️ Usage
update_response = carbon.white_label.update(
    body={
        "data_source_type": "GOOGLE_DRIVE",
        "credentials": {
            "client_id": "client_id_example",
            "redirect_uri": "redirect_uri_example",
        },
    },
    data_source_type="INTERCOM",
    credentials={
        "client_id": "client_id_example",
        "redirect_uri": "redirect_uri_example",
    },
)
⚙️ Parameters
data_source_type: str
credentials: Credentials
⚙️ Request Body

WhiteLabelUpdateRequest

🌐 Endpoint

/white_label/update post

🔙 Back to Table of Contents


Author

This Python package is automatically generated by Konfig

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc