.. image:: https://raw.githubusercontent.com/sblauth/cashocs/main/logos/cashocs_banner.jpg
:width: 800
:align: center
:target: https://github.com/sblauth/cashocs
.. image:: https://img.shields.io/pypi/v/cashocs?style=flat-square
:target: https://pypi.org/project/cashocs/
.. image:: https://img.shields.io/conda/vn/conda-forge/cashocs?style=flat-square
:target: https://anaconda.org/conda-forge/cashocs
.. image:: https://img.shields.io/pypi/pyversions/cashocs?style=flat-square
:target: https://pypi.org/project/cashocs/
.. image:: https://img.shields.io/badge/DOI-10.5281%2Fzenodo.4035939-informational?style=flat-square
:target: https://doi.org/10.5281/zenodo.4035939
.. image:: https://img.shields.io/pypi/l/cashocs?color=informational&style=flat-square
:target: https://pypi.org/project/cashocs/
.. image:: https://img.shields.io/pypi/dm/cashocs?color=informational&style=flat-square
:target: https://pypistats.org/packages/cashocs
|
.. image:: https://img.shields.io/github/actions/workflow/status/sblauth/cashocs/tests.yml?branch=main&label=tests&style=flat-square
:target: https://github.com/sblauth/cashocs/actions/workflows/tests.yml
.. image:: https://img.shields.io/codecov/c/gh/sblauth/cashocs?color=brightgreen&style=flat-square
:target: https://codecov.io/gh/sblauth/cashocs
.. image:: https://img.shields.io/codacy/grade/4debea4be12c495391e1310025851e55?style=flat-square
:target: https://app.codacy.com/gh/sblauth/cashocs/dashboard?branch=main
.. image:: https://readthedocs.org/projects/cashocs/badge/?version=latest&style=flat-square
:target: https://cashocs.readthedocs.io/en/latest/?badge=latest
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square
:target: https://github.com/psf/black
|
cashocs is a finite element software for the automated solution of shape optimization and optimal control problems. It is used to solve problems in fluid dynamics and multiphysics contexts. Its name is an acronym for computational adjoint-based shape optimization and optimal control software and the software is written in Python.
.. contents:: :local:
Introduction
cashocs is based on the finite element package FEniCS <https://fenicsproject.org>
__ and uses its high-level unified form language UFL
to treat general PDE constrained optimization problems, in particular, shape
optimization and optimal control problems.
For some applications and further information about cashocs, we also refer to the website Fluid Dynamical Shape Optimization with cashocs <https://www.itwm.fraunhofer.de/en/departments/tv/products-and-services/shape-optimization-cashocs-software.html>
_.
.. readme_start_disclaimer
Note, that we assume that you are (at least somewhat) familiar with PDE
constrained optimization and FEniCS. For a introduction to these topics,
we can recommend the textbooks
- Optimal Control and general PDE constrained optimization
Hinze, Ulbrich, Ulbrich, and Pinnau - Optimization with PDE Constraints <https://doi.org/10.1007/978-1-4020-8839-1>
_Tröltzsch - Optimal Control of Partial Differential Equations <https://doi.org/10.1090/gsm/112>
_
- Shape Optimization
Delfour and Zolesio - Shapes and Geometries <https://doi.org/10.1137/1.9780898719826>
_Sokolowski and Zolesio - Introduction to Shape Optimization <https://doi.org/10.1007/978-3-642-58106-9>
_
- Topology Optimization
Sokolowski and Novotny - Topological Derivatives in Shape Optimization <https://doi.org/10.1007/978-3-642-35245-4>
_Amstutz - An Introduction to the Topological Derivative <https://doi.org/10.1108/EC-07-2021-0433>
_
- FEniCS
Logg, Mardal, and Wells - Automated Solution of Differential Equations by the Finite Element Method <https://doi.org/10.1007/978-3-642-23099-8>
_The FEniCS demos <https://fenicsproject.org/olddocs/dolfin/2019.1.0/python/demos.html>
_
.. readme_end_disclaimer
However, the cashocs tutorial <https://cashocs.readthedocs.io/en/stable/user>
_ also gives many references either
to the underlying theory of PDE constrained optimization or to relevant demos
and documentation of FEniCS.
An overview over cashocs and its capabilities can be found in Blauth - cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software <https://doi.org/10.1016/j.softx.2020.100646>
_ and Blauth - Version 2.0 - cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software <https://doi.org/10.1016/j.softx.2023.101577>
. Moreover, note that
the full cashocs documentation is available at <https://cashocs.readthedocs.io>
.
.. readme_start_installation
Installation
Via conda-forge
cashocs is available via the anaconda package manager, and you can install it
with
.. code-block:: bash
conda install -c conda-forge cashocs
Alternatively, you might want to create a new, clean conda environment with the
command
.. code-block:: bash
conda create -n <ENV_NAME> -c conda-forge cashocs
where <ENV_NAME>
is the desired name of the new environment.
.. note::
`Gmsh <https://gmsh.info/>`_ is automatically installed with anaconda.
Manual Installation
-
First, install FEniCS <https://fenicsproject.org/download/>
_, version 2019.1.
Note that FEniCS should be compiled with PETSc and petsc4py.
-
Then, install meshio <https://github.com/nschloe/meshio>
, with a h5py <https://www.h5py.org>
version that matches the HDF5 version used in FEniCS, and matplotlib <https://matplotlib.org/>
_.
The version of meshio should be at least 4, but for compatibility it is recommended to use meshio 4.4.
-
You might also want to install Gmsh <https://gmsh.info/>
_, version 4.8 or later.
cashocs does not necessarily need this to work properly,
but it is required for the remeshing functionality.
.. note::
If you are having trouble with using the conversion tool cashocs-convert from
the command line, then you most likely encountered a problem with hdf5 and h5py.
This can (hopefully) be resolved by following the suggestions from `this thread
<https://fenicsproject.discourse.group/t/meshio-convert-to-xdmf-from-abaqus-raises-version-error-for-h5py/1480>`_,
i.e., you should try to install `meshio <https://github.com/nschloe/meshio>`_
using the command
.. code-block:: bash
pip3 install meshio[all] --no-binary=h5py
-
You can install cashocs via the PYPI <https://pypi.org/>
_ as follows
.. code-block:: bash
pip3 install cashocs
-
You can install the newest (development) version of cashocs with
.. code-block:: bash
pip3 install git+https://github.com/sblauth/cashocs.git
-
To get the latest (development) version of cashocs, clone this repository with git and install it with pip
.. code-block:: bash
git clone https://github.com/sblauth/cashocs.git
cd cashocs
pip3 install .
.. note::
To verify that the installation was successful, run the tests for cashocs
with
.. code-block:: bash
python3 -m pytest tests/
or simply
.. code-block:: bash
pytest tests/
from the source / repository root directory. Note that it might take some
time to perform all of these tests for the very first time, as FEniCS
compiles the necessary code. However, on subsequent iterations the
compiled code is retrieved from a cache, so that the tests are singificantly
faster.
.. readme_end_installation
Usage
The complete cashocs documentation is available here <https://cashocs.readthedocs.io>
. For a detailed
introduction, see the cashocs tutorial <https://cashocs.readthedocs.io/en/stable/user>
. The python source code
for the demo programs is located inside the "demos" folder.
.. _citing:
Citing
If you use cashocs for your research, please cite the following paper
.. code-block:: text
cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software
Sebastian Blauth
SoftwareX, Volume 13, 2021
https://doi.org/10.1016/j.softx.2020.100646
or use the following bibtex entry
.. code-block:: bibtex
@Article{Blauth2021cashocs,
author = {Sebastian Blauth},
journal = {SoftwareX},
title = {{cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software}},
year = {2021},
issn = {2352-7110},
pages = {100646},
volume = {13},
doi = {https://doi.org/10.1016/j.softx.2020.100646},
keywords = {PDE constrained optimization, Adjoint approach, Shape optimization, Optimal control},
}
For more details on how to cite cashocs please take a look at <https://cashocs.readthedocs.io/en/stable/about/citing/>
_.
.. readme_start_license
.. _license:
License
cashocs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cashocs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cashocs. If not, see <https://www.gnu.org/licenses/>
_.
.. readme_end_license
.. readme_start_about
Contact / About
I'm Sebastian Blauth <https://sblauth.github.io/>
, a researcher at Fraunhofer ITWM <https://www.itwm.fraunhofer.de/en.html>
. I started developing cashocs during my PhD studies and have
further developed and refined it as part of my employment at Fraunhofer ITWM.
If you have any questions / suggestions / feedback, etc., you can contact me
via sebastian.blauth@itwm.fraunhofer.de <mailto:sebastian.blauth@itwm.fraunhofer.de>
. For more information, visit my website at <https://sblauth.github.io/>
.
.. readme_end_about