Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Python Package for Uplift Modeling and Causal Inference with Machine Learning Algorithms
This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent
research [1]. It provides a standard interface that allows user to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment
Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T
on outcome Y
for users
with observed features X
, without strong assumptions on the model form. Typical use cases include
Campaign targeting optimization: An important lever to increase ROI in an advertising campaign is to target the ad to the set of customers who will have a favorable response in a given KPI such as engagement or sales. CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from A/B experiment or historical observational data.
Personalized engagement: A company has multiple options to interact with its customers such as different product choices in up-sell or messaging channels for communications. One can use CATE to estimate the heterogeneous treatment effect for each customer and treatment option combination for an optimal personalized recommendation system.
Documentation is available at:
https://causalml.readthedocs.io/en/latest/about.html
Installation instructions are available at:
https://causalml.readthedocs.io/en/latest/installation.html
Quickstarts with code-snippets are available at:
https://causalml.readthedocs.io/en/latest/quickstart.html
Example notebooks are available at:
https://causalml.readthedocs.io/en/latest/examples.html
We welcome community contributors to the project. Before you start, please read our code of conduct and check out contributing guidelines first.
We document versions and changes in our changelog.
This project is licensed under the Apache 2.0 License - see the LICENSE file for details.
To cite CausalML in publications, you can refer to the following sources:
Whitepaper: CausalML: Python Package for Causal Machine Learning
Bibtex:
@misc{chen2020causalml, title={CausalML: Python Package for Causal Machine Learning}, author={Huigang Chen and Totte Harinen and Jeong-Yoon Lee and Mike Yung and Zhenyu Zhao}, year={2020}, eprint={2002.11631}, archivePrefix={arXiv}, primaryClass={cs.CY} }
FAQs
Python Package for Uplift Modeling and Causal Inference with Machine Learning Algorithms
We found that causalml demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.