Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
pip install damo-embedding
import torch
import torch.nn as nn
from damo_embedding import Embedding
class DeepFM(torch.nn.Module):
def __init__(
self,
emb_size: int,
fea_size: int,
hid_dims=[256, 128],
num_classes=1,
dropout=[0.2, 0.2],
**kwargs,
):
super(DeepFM, self).__init__()
self.emb_size = emb_size
self.fea_size = fea_size
initializer = {
"name": "truncate_normal",
"mean": float(kwargs.get("mean", 0.0)),
"stddev": float(kwargs.get("stddev", 0.0001)),
}
optimizer = {
"name": "adam",
"gamma": float(kwargs.get("gamma", 0.001)),
"beta1": float(kwargs.get("beta1", 0.9)),
"beta2": float(kwargs.get("beta2", 0.999)),
"lambda": float(kwargs.get("lambda", 0.0)),
"epsilon": float(kwargs.get("epsilon", 1e-8)),
}
self.w = Embedding(
1,
initializer=initializer,
optimizer=optimizer,
)
self.v = Embedding(
self.emb_size,
initializer=initializer,
optimizer=optimizer,
)
self.w0 = torch.zeros(1, dtype=torch.float32, requires_grad=True)
self.dims = [fea_size * emb_size] + hid_dims
self.layers = nn.ModuleList()
for i in range(1, len(self.dims)):
self.layers.append(nn.Linear(self.dims[i - 1], self.dims[i]))
self.layers.append(nn.BatchNorm1d(self.dims[i]))
self.layers.append(nn.BatchNorm1d(self.dims[i]))
self.layers.append(nn.ReLU())
self.layers.append(nn.Dropout(dropout[i - 1]))
self.layers.append(nn.Linear(self.dims[-1], num_classes))
self.sigmoid = nn.Sigmoid()
def forward(self, input: torch.Tensor) -> torch.Tensor:
"""forward
Args:
input (torch.Tensor): input tensor
Returns:
tensor.Tensor: deepfm forward values
"""
assert input.shape[1] == self.fea_size
w = self.w.forward(input)
v = self.v.forward(input)
square_of_sum = torch.pow(torch.sum(v, dim=1), 2)
sum_of_square = torch.sum(v * v, dim=1)
fm_out = (
torch.sum((square_of_sum - sum_of_square)
* 0.5, dim=1, keepdim=True)
+ torch.sum(w, dim=1)
+ self.w0
)
dnn_out = torch.flatten(v, 1)
for layer in self.layers:
dnn_out = layer(dnn_out)
out = fm_out + dnn_out
out = self.sigmoid(out)
return out
from damo_embedding import save_model
model = DeepFM(8, 39)
save_model(model, "./", training=False)
FAQs
Python wrapper for damo, a set of fast and robust hash functions.
We found that damo-embedding demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.