==========================
DataJunction Query Service
This repository (DJQS) is an open source implementation of a DataJunction <https://github.com/DataJunction/dj>
_
query service. It allows you to create catalogs and engines that represent sqlalchemy connections. Configuring
a DJ server to use a DJQS server allows DJ to query any of the database technologies supported by sqlalchemy.
==========
Quickstart
To get started, clone this repo and start up the docker compose environment.
.. code-block::
git clone https://github.com/DataJunction/djqs
cd djqs
docker compose up
Creating Catalogs
Catalogs can be created using the :code:POST /catalogs/
endpoint.
.. code-block:: sh
curl -X 'POST' \
'http://localhost:8001/catalogs/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "djdb"
}'
Creating Engines
Engines can be created using the :code:POST /engines/
endpoint.
.. code-block:: sh
curl -X 'POST' \
'http://localhost:8001/engines/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "sqlalchemy-postgresql",
"version": "15.2",
"uri": "postgresql://dj:dj@postgres-roads:5432/djdb"
}'
Engines can be attached to existing catalogs using the :code:POST /catalogs/{name}/engines/
endpoint.
.. code-block:: sh
curl -X 'POST' \
'http://localhost:8001/catalogs/djdb/engines/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '[
{
"name": "sqlalchemy-postgresql",
"version": "15.2"
}
]'
Executing Queries
Queries can be submitted to DJQS for a specified catalog and engine.
.. code-block:: sh
curl -X 'POST' \
'http://localhost:8001/queries/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"catalog_name": "djdb",
"engine_name": "sqlalchemy-postgresql",
"engine_version": "15.2",
"submitted_query": "SELECT * from roads.repair_orders",
"async_": false
}'
Async queries can be submitted as well.
.. code-block:: sh
curl -X 'POST' \
'http://localhost:8001/queries/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"catalog_name": "djdb",
"engine_name": "sqlalchemy-postgresql",
"engine_version": "15.2",
"submitted_query": "SELECT * from roads.repair_orders",
"async_": true
}'
response
.. code-block:: json
{
"catalog_name": "djdb",
"engine_name": "sqlalchemy-postgresql",
"engine_version": "15.2",
"id": "<QUERY ID HERE>",
"submitted_query": "SELECT * from roads.repair_orders",
"executed_query": null,
"scheduled": null,
"started": null,
"finished": null,
"state": "ACCEPTED",
"progress": 0,
"results": [],
"next": null,
"previous": null,
"errors": []
}
The query id provided in the response can then be used to check the status of the running query and get the results
once it's completed.
.. code-block:: sh
curl -X 'GET' \
'http://localhost:8001/queries/<QUERY ID HERE>/' \
-H 'accept: application/json'
response
.. code-block:: json
{
"catalog_name": "djdb",
"engine_name": "sqlalchemy-postgresql",
"engine_version": "15.2",
"id": "$QUERY_ID",
"submitted_query": "SELECT * from roads.repair_orders",
"executed_query": "SELECT * from roads.repair_orders",
"scheduled": "2023-02-28T07:27:55.367162",
"started": "2023-02-28T07:27:55.367387",
"finished": "2023-02-28T07:27:55.502412",
"state": "FINISHED",
"progress": 1,
"results": [
{
"sql": "SELECT * from roads.repair_orders",
"columns": [...],
"rows": [...],
"row_count": 25
}
],
"next": null,
"previous": null,
"errors": []
}
Reflection
If running a reflection service, that service can leverage the
:code:POST /table/{table}/columns/
endpoint of DJQS to get column names and types for a given table.
.. code-block:: sh
curl -X 'GET' \
'http://localhost:8001/table/djdb.roads.repair_orders/columns/?engine=sqlalchemy-postgresql&engine_version=15.2' \
-H 'accept: application/json'
response
.. code-block:: json
{
"name": "djdb.roads.repair_orders",
"columns": [
{
"name": "repair_order_id",
"type": "INT"
},
{
"name": "municipality_id",
"type": "STR"
},
{
"name": "hard_hat_id",
"type": "INT"
},
{
"name": "order_date",
"type": "DATE"
},
{
"name": "required_date",
"type": "DATE"
},
{
"name": "dispatched_date",
"type": "DATE"
},
{
"name": "dispatcher_id",
"type": "INT"
}
]
}
======
DuckDB
DJQS includes an example of using DuckDB as an engine and it comes preloaded with the roads example database.
Create a :code:djduckdb
catalog and a :code:duckdb
engine.
.. code-block::
curl -X 'POST' \
'http://localhost:8001/catalogs/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "djduckdb"
}'
.. code-block::
curl -X 'POST' \
'http://localhost:8001/engines/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "duckdb",
"version": "0.7.1",
"uri": "duckdb://local[*]"
}'
.. code-block::
curl -X 'POST' \
'http://localhost:8001/catalogs/djduckdb/engines/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '[
{
"name": "duckdb",
"version": "0.7.1"
}
]'
Now you can submit DuckDB SQL queries.
.. code-block::
curl -X 'POST' \
'http://localhost:8001/queries/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"catalog_name": "djduckdb",
"engine_name": "duckdb",
"engine_version": "0.7.1",
"submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
"async_": false
}'
=====
Spark
DJQS includes an example of using Spark as an engine. To try it, start up the docker compose environment and then
load the example roads database into Spark.
.. code-block::
docker exec -it djqs /bin/bash -c "python /code/docker/spark_load_roads.py"
Next, create a :code:djspark
catalog and a :code:spark
engine.
.. code-block::
curl -X 'POST' \
'http://localhost:8001/catalogs/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "djspark"
}'
.. code-block::
curl -X 'POST' \
'http://localhost:8001/engines/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "spark",
"version": "3.3.2",
"uri": "spark://local[*]"
}'
.. code-block::
curl -X 'POST' \
'http://localhost:8001/catalogs/djspark/engines/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '[
{
"name": "spark",
"version": "3.3.2"
}
]'
Now you can submit Spark SQL queries.
.. code-block::
curl -X 'POST' \
'http://localhost:8001/queries/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"catalog_name": "djspark",
"engine_name": "spark",
"engine_version": "3.3.2",
"submitted_query": "SELECT * FROM roads.us_states LIMIT 10",
"async_": false
}'