:warning: Note: dwave-greedy is deprecated in favor of dwave-samplers <https://github.com/dwavesystems/dwave-samplers>
_.
.. image:: https://circleci.com/gh/dwavesystems/dwave-greedy.svg?style=svg
:target: https://circleci.com/gh/dwavesystems/dwave-greedy
:alt: Linux/MacOS/Windows build status
.. image:: https://codecov.io/gh/dwavesystems/dwave-greedy/branch/master/graph/badge.svg?token=ZkZo09uAl7
:target: https://codecov.io/gh/dwavesystems/dwave-greedy
:alt: Code coverage
.. image:: https://readthedocs.com/projects/d-wave-systems-dwave-greedy/badge/?version=latest
:target: https://docs.ocean.dwavesys.com/projects/greedy/en/latest/
:alt: Documentation status
.. image:: https://badge.fury.io/py/dwave-greedy.svg
:target: https://badge.fury.io/py/dwave-greedy
:alt: Latest version on PyPI
.. image:: https://img.shields.io/pypi/pyversions/dwave-greedy.svg?style=flat
:target: https://pypi.org/project/dwave-greedy/
:alt: PyPI - Python Version
============
dwave-greedy
.. index-start-marker
An implementation of a steepest descent solver for binary quadratic models.
Steepest descent is the discrete analogue of gradient descent, but the best
move is computed using a local minimization rather rather than computing a
gradient. At each step, we determine the dimension along which to descend based
on the highest energy drop caused by a variable flip.
.. code-block:: python
>>> import greedy
...
>>> solver = greedy.SteepestDescentSolver()
>>> sampleset = solver.sample_ising({0: 2, 1: 2}, {(0, 1): -1})
...
>>> print(sampleset)
0 1 energy num_oc.
0 -1 -1 -5.0 1
['SPIN', 1 rows, 1 samples, 2 variables]
.. index-end-marker
Installation
.. installation-start-marker
Install from a package on PyPI:
.. code-block:: bash
pip install dwave-greedy
.. installation-end-marker
Examples
.. example-start-marker
Simple frustrated Ising triangle:
.. code-block:: python
import dimod
import greedy
# Construct a simple problem
bqm = dimod.BQM.from_qubo({'ab': 1, 'bc': 1, 'ca': 1})
# Instantiate the sampler
sampler = greedy.SteepestDescentSampler()
# Solve the problem
result = sampler.sample(bqm)
Large RAN1_ sparse problem (requires NetworkX_ package):
.. code-block:: python
import dimod
import greedy
import networkx
# Generate random Erdős-Rényi sparse graph with 10% density
graph = networkx.fast_gnp_random_graph(n=1000, p=0.1)
# Generate RAN1 problem on the sparse graph
bqm = dimod.generators.random.ran_r(r=1, graph=graph)
# Instantiate the sampler
sampler = greedy.SteepestDescentSampler()
# Run steepest descent for 100 times, each time from a random state
sampleset = sampler.sample(bqm, num_reads=100)
# Print the best energy
print(min(sampleset.record.energy))
.. example-end-marker
License
Released under the Apache License 2.0. See <LICENSE>
_ file.
.. _NetworkX: https://networkx.github.io/
.. _RAN1: https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.generators.ran_r.html
Contributing
Ocean's contributing guide <https://docs.ocean.dwavesys.com/en/stable/contributing.html>
_
has guidelines for contributing to Ocean packages.