New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

embedding-as-service

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

embedding-as-service

embedding-as-service: one-stop solution to encode sentence to vectors using various embedding methods

  • 3.1.2
  • PyPI
  • Socket score

Maintainers
1

embedding-as-service

One-Stop Solution to encode sentence to fixed length vectors from various embedding techniques
• Inspired from bert-as-service

GitHub stars Downloads Pypi package GitHub issues GitHub license Contributors

What is itInstallationGetting StartedSupported EmbeddingsAPI

What is it

Encoding/Embedding is a upstream task of encoding any inputs in the form of text, image, audio, video, transactional data to fixed length vector. Embeddings are quite popular in the field of NLP, there has been various Embeddings models being proposed in recent years by researchers, some of the famous one are bert, xlnet, word2vec etc. The goal of this repo is to build one stop solution for all embeddings techniques available, here we are starting with popular text embeddings for now and later on we aim to add as much technique for image, audio, video inputs also.

embedding-as-service help you to encode any given text to fixed length vector from supported embeddings and models.

💾 Installation

▴ Back to top

Here we have given the capability to use embedding-as-service like a module or you can run it as a server and handle queries by installing client package embedding-as-service-client

Using embedding-as-service as module

Install the embedding-as-servive via pip.

$ pip install embedding-as-service

Note that the code MUST be running on Python >= 3.6. Again module does not support Python 2!

Using embedding-as-service as a server

Here you also need to install a client module embedding-as-service-client

$ pip install embedding-as-service # server
$ pip install embedding-as-service-client # client

Client module need not to be on Python 3.6, it supports both Python2 and Python3

⚡ ️Getting Started

▴ Back to top

1. Intialise encoder using supported embedding and models from here

If using embedding-as-service as a module

>>> from embedding_as_service.text.encode import Encoder  
>>> en = Encoder(embedding='bert', model='bert_base_cased', max_seq_length=256)  

If using embedding-as-service as a server

# start the server by proving embedding, model, port, max_seq_length[default=256], num_workers[default=4]
$ embedding-as-service-start --embedding bert --model bert_base_cased --port 8080 --max_seq_length 256
>>> from embedding_as_service_client import EmbeddingClient
>>> en = EmbeddingClient(host=<host_server_ip>, port=<host_port>)
2. Get sentences tokens embedding
>>> vecs = en.encode(texts=['hello aman', 'how are you?'])  
>>> vecs  
array([[[ 1.7049843 ,  0.        ,  1.3486509 , ..., -1.3647075 ,  
 0.6958289 ,  1.8013777 ], ... [ 0.4913215 ,  0.60877025,  0.73050433, ..., -0.64490885, 0.8525057 ,  0.3080206 ]]], dtype=float32)  
>>> vecs.shape  
(2, 128, 768) # batch x max_sequence_length x embedding_size  
3. Using pooling strategy, click here for more.
Supported Pooling Methods
StrategyDescription
Noneno pooling at all, useful when you want to use word embedding instead of sentence embedding. This will results in a [max_seq_len, embedding_size] encode matrix for a sequence.
reduce_meantake the average of all token embeddings
reduce_mintake the minumun of all token embeddings
reduce_maxtake the maximum of all token embeddings
reduce_mean_maxdo reduce_mean and reduce_max separately and then concat them together
first_tokenget the token embedding of first token of a sentence
last_tokenget the token embedding of last token of a sentence
>>> vecs = en.encode(texts=['hello aman', 'how are you?'], pooling='reduce_mean')  
>>> vecs  
array([[-0.33547154,  0.34566957,  1.1954105 , ...,  0.33702594,  
 1.0317835 , -0.785943  ], [-0.3439088 ,  0.36881036,  1.0612687 , ...,  0.28851607, 1.1107115 , -0.6253736 ]], dtype=float32)  

>>> vecs.shape  
(2, 768) # batch x embedding_size  
4. Show embedding Tokens
>>> en.tokenize(texts=['hello aman', 'how are you?'])  
[['_hello', '_aman'], ['_how', '_are', '_you', '?']]  
5. Using your own tokenizer
>>> texts = ['hello aman!', 'how are you']  

# a naive whitespace tokenizer  
>>> tokens = [s.split() for s in texts]  
>>> vecs = en.encode(tokens, is_tokenized=True)  

📋 API

▴ Back to top

  1. class embedding_as_service.text.encoder.Encoder
ArgumentTypeDefaultDescription
embeddingstrRequiredembedding method to be used, check Embedding column here
modelstrRequiredModel to be used for mentioned embedding, check Model column here
max_seq_lengthint128Maximum Sequence Length, default is 128
  1. def embedding_as_service.text.encoder.Encoder.encode
ArgumentTypeDefaultDescription
TextsList[str] or List[List[str]]RequiredList of sentences or list of list of sentence tokens in case of is_tokenized=True
poolingstr(Optional)Pooling methods to apply, here is available methods
is_tokenizedboolFalseset as True in case of tokens are passed for encoding
batch_sizeint128maximum number of sequences handled by encoder, larger batch will be partitioned into small batches.
  1. def embedding_as_service.text.encoder.Encoder.tokenize
ArgumentTypeDefaultDescription
TextsList[str]RequiredList of sentences

✅ Supported Embeddings and Models

▴ Back to top

Here are the list of supported embeddings and their respective models.

EmbeddingModelEmbedding dimensionsPaper
:one:albertalbert_base768 Read Paper :bookmark:
albert_large1024
albert_xlarge2048
albert_xxlarge4096
:two:xlnetxlnet_large_cased1024 Read Paper :bookmark:
xlnet_base_cased768
:three:bertbert_base_uncased768 Read Paper :bookmark:
bert_base_cased768
bert_multi_cased768
bert_large_uncased1024
bert_large_cased1024
:four:elmoelmo_bi_lm512 Read Paper :bookmark:
:five:ulmfitulmfit_forward300 Read Paper :bookmark:
ulmfit_backward300
:six:useuse_dan512 Read Paper :bookmark:
use_transformer_large512
use_transformer_lite512
:seven:word2vecgoogle_news_300300 Read Paper :bookmark:
:eight:fasttextwiki_news_300300 Read Paper :bookmark:
wiki_news_300_sub300
common_crawl_300300
common_crawl_300_sub300
:nine:glovetwitter_200200 Read Paper :bookmark:
twitter_100100
twitter_5050
twitter_2525
wiki_300300
wiki_200200
wiki_100100
wiki_5050
crawl_42B_300300
crawl_840B_300300

Credits

This software uses the following open source packages:

Contributors ✨

Thanks goes to these wonderful people (emoji key):


MrPranav101

💻 📖 🚇

Aman Srivastava

💻 📖 🚇

Chirag Jain

💻 📖 🚇

Ashutosh Singh

💻 📖 🚇

Dhaval Taunk

💻 📖 🚇

Alec Koumjian

🐛

Pradeesh

🐛

This project follows the all-contributors specification. Contributions of any kind welcome!

Please read the contribution guidelines first.

Citing

▴ Back to top

If you use embedding-as-service in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{aman2019embeddingservice,
  title={embedding-as-service},
  author={Srivastava, Aman},
  howpublished={\url{https://github.com/amansrivastava17/embedding-as-service}},
  year={2019}
}

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc