Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

gplearn

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gplearn

Genetic Programming in Python, with a scikit-learn inspired API

  • 0.4.2
  • PyPI
  • Socket score

Maintainers
1

.. image:: https://img.shields.io/pypi/v/gplearn.svg :target: https://pypi.python.org/pypi/gplearn/ :alt: Version .. image:: https://img.shields.io/pypi/l/gplearn.svg :target: https://github.com/trevorstephens/gplearn/blob/master/LICENSE :alt: License .. image:: https://readthedocs.org/projects/gplearn/badge/?version=stable :target: http://gplearn.readthedocs.io/ :alt: Documentation Status .. image:: https://github.com/trevorstephens/gplearn/actions/workflows/build.yml/badge.svg?branch=master :target: https://github.com/trevorstephens/gplearn/actions/workflows/build.yml :alt: Test Status .. image:: https://coveralls.io/repos/trevorstephens/gplearn/badge.svg :target: https://coveralls.io/r/trevorstephens/gplearn :alt: Test Coverage .. image:: https://app.codacy.com/project/badge/Grade/02506317148e41a4b68a66e4c4e2b035 :target: https://app.codacy.com/gh/trevorstephens/gplearn/dashboard :alt: Code Health

|

.. image:: https://raw.githubusercontent.com/trevorstephens/gplearn/master/doc/logos/gplearn-wide.png :target: https://github.com/trevorstephens/gplearn :alt: Genetic Programming in Python, with a scikit-learn inspired API

|

Welcome to gplearn!

gplearn implements Genetic Programming in Python, with a scikit-learn <http://scikit-learn.org>_ inspired and compatible API.

While Genetic Programming (GP) can be used to perform a very wide variety of tasks <http://www.genetic-programming.org/combined.php>_, gplearn is purposefully constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful estimators that are straight-forward to implement.

Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that best describes a relationship. It begins by building a population of naive random formulas to represent a relationship between known independent variables and their dependent variable targets in order to predict new data. Each successive generation of programs is then evolved from the one that came before it by selecting the fittest individuals from the population to undergo genetic operations.

gplearn retains the familiar scikit-learn fit/predict API and works with the existing scikit-learn pipeline <https://scikit-learn.org/stable/modules/compose.html>_ and grid search <http://scikit-learn.org/stable/modules/grid_search.html>_ modules. The package attempts to squeeze a lot of functionality into a scikit-learn-style API. While there are a lot of parameters to tweak, reading the documentation <http://gplearn.readthedocs.io/>_ should make the more relevant ones clear for your problem.

gplearn supports regression through the SymbolicRegressor, binary classification with the SymbolicClassifier, as well as transformation for automated feature engineering with the SymbolicTransformer, which is designed to support regression problems, but should also work for binary classification.

gplearn is built on scikit-learn and a fairly recent copy (1.0.2+) is required for installation <http://gplearn.readthedocs.io/en/stable/installation.html>. If you come across any issues in running or installing the package, please submit a bug report <https://github.com/trevorstephens/gplearn/issues>.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc