You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 7-8.RSVP
Socket
Socket
Sign inDemoInstall

h2ogpte

Package Overview
Dependencies
11
Maintainers
1
Alerts
File Explorer

Advanced tools

Install Socket

Detect and block malicious and high-risk dependencies

Install

h2ogpte

Client library for Enterprise h2oGPTe


Maintainers
1

Readme

Python Client and Documentation

  • Python client: https://pypi.org/project/h2ogpte/
  • Technical API documentation: https://h2oai.github.io/h2ogpte/
  • General Documentation: https://docs.h2o.ai/h2ogpte-docs/
  • RAG Benchmarks: latest results and how to reproduce

We recommend installing the client with the same version as the software:

pip install h2ogpte

API Keys and Python Client Examples

API keys are needed to programmatically connect to h2oGPTe from the Python client.

There are two kinds of API keys:

  • Global API key allows a client to impersonate your user for all API calls.
  • Collection-specific API keys allows a client to chat with your specific collection.
Global API keys

If a collection is not specified when creating a new API key, that key is considered to be a global API key. Use global API keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API keys can create, delete, or interact with any of your past, current, and future collections, documents, chats, and settings. The GUI offers an Impersonate feature under the user settings.

from h2ogpte import H2OGPTE

client = H2OGPTE(
    address='https://h2ogpte.genai.h2o.ai',
    api_key='sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX',
)

# Create a new collection
collection_id = client.create_collection(
    name='Contracts',
    description='Paper clip supply contracts',
)

# Create documents
# Note: Done for demonstration purposes only (not usually needed)
with open('dunder_mifflin.txt', 'w') as f:
    f.write('There were 55 paper clips shipped, 22 to Scranton and 33 to Filmer.')

with open('initech.txt', 'w') as f:
    f.write('David Brent did not sign any contract with Initech.')

# Upload documents
# Many file types are supported: text/image/audio documents and archives
with open('dunder_mifflin.txt', 'rb') as f:
    dunder_mifflin = client.upload('Dunder Mifflin.txt', f)

with open('initech.txt', 'rb') as f:
    initech = client.upload('IniTech.txt', f)

# Ingest documents (Creates previews, chunks and embeddings)
client.ingest_uploads(collection_id, [dunder_mifflin, initech])

# Create a chat session
chat_session_id = client.create_chat_session(collection_id)

# Query the collection
with client.connect(chat_session_id) as session:
    reply = session.query(
        'How many paper clips were shipped to Scranton?',
        timeout=60,
    )
    print(reply.content)

    reply = session.query(
        'Did David Brent co-sign the contract with Initech?',
        timeout=60,
    )
    print(reply.content)

    # In case have multiple LLMs, route to LLM with best
    # price/performance below given max cost
    reply = session.query(
        'Did David Brent co-sign the contract with Initech?',
        llm="auto",
        llm_args=dict(cost_controls=dict(max_cost=1e-2)),
        timeout=60,
    )
    print(reply.content)

    # Classification
    reply = session.query(
        'Did David Brent co-sign the contract with Initech?',
        llm_args=dict(
            guided_choice=['yes', 'no', 'unclear'],
        ),
        timeout=60,
    )
    print(reply.content)

    # Create custom JSON
    reply = session.query(
        'How many paper clips were shipped to Scranton?',
        llm_args=dict(
            response_format='json_object',
            guided_json={
                '$schema': 'http://json-schema.org/draft-07/schema#',
                'type': 'object',
                'properties': {'count': {'type': 'integer'}},
                'required': [
                    'count',
                ],
            },
        ),
        timeout=60,
    )
    print(reply.content)

    # Force multimodal vision mode (requires vision-capable LLMs)
    reply = session.query(
        'How many paper clips were shipped to Scranton?',
        llm_args=dict(
            enable_vision='on',
        ),
        timeout=60,
    )
    print(reply.content)

# Summarize each document
documents = client.list_documents_in_collection(collection_id, offset=0, limit=99)
for doc in documents:
    summary = client.process_document(
        document_id=doc.id,
        pre_prompt_summary='Pay attention to the following text in order to summarize.',
        prompt_summary='Write a concise summary from the text above.',
        timeout=60,
    )
    print(summary.content)

# Chat with LLM without a collection
chat_session_id = client.create_chat_session()

with client.connect(chat_session_id) as session:
    reply = session.query(
        'Why is drinking water good for you?',
        timeout=60,
    )
    print(reply.content)
Collection-specific API keys

Use collection-specific API keys to grant external access to only chat with the specified collection and make related API calls. Collection-specific API keys do not allow any other API calls such as creation, deletion, or access to other collections or chats.

from h2ogpte import H2OGPTE

client = H2OGPTE(
    address='https://h2ogpte.genai.h2o.ai',
    api_key='sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX',
)

# Automatically connects to the collection from the
# collection-specific API key
chat_session_id = client.create_chat_session_on_default_collection()

# Query the collection
with client.connect(chat_session_id) as session:
    reply = session.query(
        'How many paper clips were shipped to Scranton?',
        timeout=60,
    )
    print(reply.content)

    reply = session.query(
        'Did David Brent co-sign the contract with Initech?',
        timeout=60,
    )
    print(reply.content)

# Summarize each document
default_collection = client.get_default_collection()
documents = client.list_documents_in_collection(default_collection.id, offset=0, limit=99)
for doc in documents:
    summary = client.summarize_document(
        document_id=doc.id,
        timeout=60,
    )
    print(summary.content)

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc