Library for AI-Assisted Mapping Tool developed for Humanitarian OpenStreetMap Team
A small team from Omdena worked on a disaster management project. This package was created in order to simplify the integration of the data processing steps with the model training one.
data
Directory Structure
.
├───images
│ ├───1
│ ├───2
│ ├───3
│ ├───4
│ └───5
├───inputs
│ ├───1
│ ├───2
│ ├───3
│ ├───4
│ └───5
├───masks
│ ├───1
│ ├───2
│ ├───3
│ ├───4
│ └───5
└───predictions
├───1
├───2
├───3
├───4
└───5
inputs
: GeoJSON labels and image files given to us.images
: Georeferenced images with the fourth band removed (if any).masks
: Rasterized labels.predictions
: Masks predicted by some ML model.
API Reference
-
preprocess(data_path, input_dir, image_dir, mask_dir)
Function for fully preprocessing the input data.
data_path
: Path of the directory where all the data are stored.input_dir
: Name of the directory where the input data are stored.image_dir
: Name of the directory where the images are stored.mask_dir
: Name of the directory where the masks are stored.
-
predict(checkpoint_path, data_path, image_dir, pred_dir)
Function for predicting masks for all the input images.
checkpoint_path
: Path where the architecture and weights of the model can be found.data_path
: Path of the directory where all the data are stored.image_dir
: Name of the directory where the images are stored.pred_dir
: Name of the directory where the predicted images will go.
Example Usages
Preprocessing:
from hotlib import preprocess
preprocess("/content/gdrive/MyDrive/Omdena/data", "inputs", "images", "masks")
Prediction:
from hotlib import predict
predict(
"/content/gdrive/MyDrive/Omdena/checkpoints",
"/content/gdrive/MyDrive/Omdena/data",
"images",
"predictions",
)