New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

interpn

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

interpn

N-dimensional interpolation/extrapolation methods

  • 0.2.3
  • PyPI
  • Socket score

Maintainers
1

interpn

Python bindings to the interpn Rust library for N-dimensional interpolation and extrapolation.

Docs | Repo | Rust Library (github) | Rust Docs (docs.rs)

Features

Feature →
↓ Interpolant Method
Regular
Grid
Rectilinear
Grid
Json
Serialization
Linear
Cubic

The methods provided here, while more limited in scope than scipy's, are

  • significantly faster for higher dimensions (1-3 orders of magnitude under most conditions)
  • use almost no RAM (and perform no heap allocations at all)
  • produce significantly improved floating-point error (by 1-2 orders of magnitude)
  • are json-serializable using Pydantic
  • can also be used easily in web and embedded applications via the Rust library
  • are permissively licensed

ND throughput 1 obs

See here for more info about quality-of-fit, throughput, and memory usage.

Installation

pip install interpn

Example: Available Methods

import interpn
import numpy as np

# Build grid
x = np.linspace(0.0, 10.0, 5)
y = np.linspace(20.0, 30.0, 4)
grids = [x, y]

xgrid, ygrid = np.meshgrid(x, y, indexing="ij")
zgrid = (xgrid + 2.0 * ygrid)  # Values at grid points

# Grid inputs for true regular grid
dims = [x.size, y.size]
starts = np.array([x[0], y[0]])
steps = np.array([x[1] - x[0], y[1] - y[0]])

# Initialize different interpolators
# Call like `linear_regular.eval([xs, ys])`
linear_regular = interpn.MultilinearRegular.new(dims, starts, steps, zgrid)
cubic_regular = interpn.MulticubicRegular.new(dims, starts, steps, zgrid)
linear_rectilinear = interpn.MultilinearRectilinear.new(grids, zgrid)
cubic_rectilinear = interpn.MulticubicRectilinear.new(grids, zgrid)

Example: Multilinear Interpolation on a Regular Grid

import interpn
import numpy as np

# Build grid
x = np.linspace(0.0, 10.0, 5)
y = np.linspace(20.0, 30.0, 4)

xgrid, ygrid = np.meshgrid(x, y, indexing="ij")
zgrid = (xgrid + 2.0 * ygrid)  # Values at grid points

# Grid inputs for true regular grid
dims = [x.size, y.size]
starts = np.array([x[0], y[0]])
steps = np.array([x[1] - x[0], y[1] - y[0]])

# Observation points pointed back at the grid
obs = [xgrid.flatten(), ygrid.flatten()]

# Initialize
interpolator = interpn.MultilinearRegular.new(dims, starts, steps, zgrid.flatten())

# Interpolate
out = interpolator.eval(obs)

# Check result
assert np.allclose(out, zgrid.flatten(), rtol=1e-13)

# Serialize and deserialize
roundtrip_interpolator = interpn.MultilinearRegular.model_validate_json(
    interpolator.model_dump_json()
)
out2 = roundtrip_interpolator.eval(obs)

# Check result from roundtrip serialized/deserialized interpolator
assert np.all(out == out2)

License

Licensed under either of

at your option.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc