New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

light-deep-ai

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

light-deep-ai

Light AI tools developed by Gang Zhang

  • 1.5.9
  • PyPI
  • Socket score

Maintainers
1

light_deep_ai: Deep AI modules developed by MOGO RTX team, aims to accelerate the distributed training, int8-aware distributed training, distributed evaluation and inference, model tracing and optimization, and TensorRT deployment.

1 Dependency
torch>=1.10.0
tensorrt>=7.0
graphviz
2 Installation
pip3 install graphviz
apt-get install graphviz
python3 setup.py install
3 Examples
3.1 Graph Tracing and Model Optimization
import torch
import torch.nn as nn
import torch.nn.functional as F

import light_deep_ai


class conv3x3_bn_relu(nn.Module):
    def __init__(self, in_planes, out_planes, stride=1, dilation=1, groups=1):
        super(conv3x3_bn_relu, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes),
            nn.ReLU(inplace=True)
        )
    
    def forward(self, x):
        x1 = self.net(x)
        return x1


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.net = nn.Sequential(
            conv3x3_bn_relu(64, 64),
            conv3x3_bn_relu(64, 64)
        )
    
    def forward(self, x):
        x1 = self.net(x)
        return x1

model = Model()
model.eval()
model.cuda()

input_data = torch.randn(1, 64, 1024, 1024).cuda()

# graph tracing
model_fx = light_deep_ai.graph_tracer.ad_trace.graph_trace(model, function_name=None)

# Model Optimization
# conduct graph tracing in graph_optim_from_module automatically
model_fx_optim = light_deep_ai.graph_tracer.graph_utils.graph_optim_from_module(model, function_name=None, sample_inputs=(input_data,))
3.2 Quantization-Aware Training
import torch
import torch.nn as nn
import torch.nn.functional as F

import light_deep_ai


class conv3x3_bn_relu(nn.Module):
    def __init__(self, in_planes, out_planes, stride=1, dilation=1, groups=1):
        super(conv3x3_bn_relu, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes),
            nn.ReLU(inplace=True)
        )
    
    def forward(self, x):
        x1 = self.net(x)
        return x1


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.net = nn.Sequential(
            conv3x3_bn_relu(64, 64),
            conv3x3_bn_relu(64, 64)
        )
    
    def forward(self, x):
        x1 = self.net(x)
        return x1

model = Model()
model.eval()
model.cuda()

input_data = torch.randn(1, 64, 1024, 1024).cuda()

# Model Optimization
# conduct graph tracing in graph_optim_from_module automatically
model_fx_optim = light_deep_ai.graph_tracer.graph_utils.graph_optim_from_module(model, function_name=None)

# qat
model_qat = light_deep_ai.quant_lib.quant_utils.prepare_qat(model_fx_optim,
    sample_inputs=[input_data],
    observe_config_dic=dict(averaging_constant=0.05),
    quant_config_dic=dict(quant_min=-127, quant_max=127, is_symmetric=True, is_quant=True),
    disable_prefix=[])


# vis model network
light_deep_ai.graph_tracer.vis_model.vis(model_fx_optim, './model_fx_optim.png')
light_deep_ai.graph_tracer.vis_model.vis(model_qat, './model_qat.png')

# qat training
...
3.3 TensorRT Deployment
import torch
import torch.nn as nn
import torch.nn.functional as F

import light_deep_ai
import light_deep_ai_plugin
from light_deep_ai.deploy_lib.convert_trt import InputTensor, torch2trt

class conv3x3_bn_relu(nn.Module):
    def __init__(self, in_planes, out_planes, stride=1, dilation=1, groups=1):
        super(conv3x3_bn_relu, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes),
            nn.ReLU(inplace=True)
        )
    
    def forward(self, x):
        x1 = self.net(x)
        return x1


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.net = nn.Sequential(
            conv3x3_bn_relu(64, 64),
            conv3x3_bn_relu(64, 64)
        )
    
    def forward(self, x):
        x1 = self.net(x)
        x2 = light_deep_ai_plugin.max_op(x1, dim=1)
        return x2

model = Model()
model.eval()
model.cuda()

input_data = torch.randn(1, 64, 1024, 1024).cuda()

# Model Optimization
# conduct graph tracing in graph_optim_from_module automatically
model_fx_optim = light_deep_ai.graph_tracer.graph_utils.graph_optim_from_module(model, function_name=None, sample_inputs=(input_data,))

# TensorRT Deployment
model_trt = torch2trt(
    model=model_fx_optim,
    input_specs=[InputTensor(input_data, 'input_data')],
    output_names=['max_value', 'max_index'],
    fp16_mode=True,
    #dla_core=0,
    strict_type_constraints=True,
    explicit_precision=True
)

# vis tensorrt network
light_deep_ai.deploy_lib.tools.vis_trt.vis(model_trt.network, 'test.png')

error = model(input_data)[0] - model_trt(input_data)[0]
print(error.abs().max())

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc