New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

memories-dev

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

memories-dev

Collective Memory Infrastructure for AGI

  • 2.0.3
  • PyPI
  • Socket score

Maintainers
1

🌍 memories-dev

Building Earth's Unified Memory System for Artificial General Intelligence

Documentation License Python 3.9+ Code style: black Version Discord PyPI

memories.dev - Collective AGI Memory | Product Hunt

The Scientific Framework for Grounding AI Systems in Earth Observation

"From Data to Memory: Bridging Artificial Intelligence with Earth's Observable Reality"


memories-dev Architecture

📊 Scientific Abstract

memories-dev represents a paradigm shift in grounding artificial intelligence systems through Earth observation data. Current foundation models suffer from hallucinations and limited temporal understanding of real-world physical environments. This framework implements a multi-tiered memory architecture that integrates real-time satellite imagery, geospatial vectors, sensor networks, and environmental metrics to create a comprehensive memory system of Earth's observable state.

Our approach demonstrates significant improvements in AI factuality when reasoning about geographic environments:

  • Reduced hallucinations when describing physical locations compared to standard LLMs
  • Enhanced spatiotemporal reasoning for understanding how environments change over time
  • Improved precision in environmental assessments and geospatial analysis

These capabilities are achieved through our novel memory management system utilizing specialized Earth analyzers and a hierarchical approach to data acquisition, processing, and retrieval, all designed with scientific rigor and validation protocols.

📝 Table of Contents

🔬 Scientific Foundation

Research Problem

Current AI systems face fundamental challenges when reasoning about the physical world:

  1. Hallucination Generation: Foundation models trained on internet text produce plausible but factually incorrect assertions about physical environments
  2. Temporal Discontinuity: Inability to track and reason about environmental changes over time
  3. Multimodal Integration Gaps: Difficulty merging visual, spatial, and environmental data into coherent reasoning
  4. Ground Truth Verification: Lack of objective verification mechanisms for assertions about physical reality

Methodological Approach

memories-dev addresses these challenges through:

%%{init: {'theme': 'forest', 'themeVariables': { 'primaryColor': '#2c3e50', 'primaryTextColor': '#ecf0f1', 'primaryBorderColor': '#34495e', 'lineColor': '#3498db', 'secondaryColor': '#16a085', 'tertiaryColor': '#2980b9'}}}%%
graph TD
    classDef mainProcess fill:#1e293b,stroke:#334155,stroke-width:2px,color:white,font-weight:bold
    classDef dataSource fill:#3b82f6,stroke:#2563eb,stroke-width:2px,color:white,font-weight:bold
    classDef processing fill:#ef4444,stroke:#dc2626,stroke-width:2px,color:white,font-weight:bold
    classDef storage fill:#10b981,stroke:#059669,stroke-width:2px,color:white,font-weight:bold
    classDef analysis fill:#8b5cf6,stroke:#7c3aed,stroke-width:2px,color:white,font-weight:bold
    classDef integration fill:#f59e0b,stroke:#d97706,stroke-width:2px,color:white,font-weight:bold
    
    A[Data Acquisition] --> B[Multi-modal Processing]
    B --> C[Hierarchical Memory System]
    C --> D[Earth Analyzers]
    D --> E[LLM Integration]
    E --> F[Application Layer]
    
    A1[Satellite Imagery] --> A
    A2[Vector Databases] --> A
    A3[Sensor Networks] --> A
    A4[Environmental APIs] --> A
    
    B1[Data Cleaning] --> B
    B2[Format Normalization] --> B
    B3[Temporal Alignment] --> B
    B4[Spatial Registration] --> B
    
    C1[Hot Memory Tier] --> C
    C2[Warm Memory Tier] --> C
    C3[Cold Memory Tier] --> C
    C4[Glacier Storage Tier] --> C
    
    D1[Terrain Analysis] --> D
    D2[Climate Modeling] --> D
    D3[Environmental Impact] --> D
    D4[Urban Development] --> D
    
    A:::dataSource
    A1:::dataSource
    A2:::dataSource
    A3:::dataSource
    A4:::dataSource
    
    B:::processing
    B1:::processing
    B2:::processing
    B3:::processing
    B4:::processing
    
    C:::storage
    C1:::storage
    C2:::storage
    C3:::storage
    C4:::storage
    
    D:::analysis
    D1:::analysis
    D2:::analysis
    D3:::analysis
    D4:::analysis
    
    E:::integration
    F:::integration

Key Scientific Innovations

  1. Multi-Tiered Memory Architecture: Hierarchical organization of Earth observation data across hot, warm, cold, and glacier tiers based on access patterns and query relevance

  2. Asynchronous Earth Analyzers: Specialized processing modules that extract contextual understanding from raw observation data in parallel

  3. Temporal Memory Chains: Algorithms for linking observations across time to enable reasoning about environmental changes

  4. Spatiotemporal Query Engine: Advanced retrieval system that handles complex queries with both location and time components

  5. Multi-Modal Data Fusion: Techniques for combining satellite imagery, vector data, and tabular information into unified memory representations

Foundation Models + Earth Memory Integration

%%{init: {'theme': 'forest', 'themeVariables': { 'primaryColor': '#1f77b4', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0d6efd', 'lineColor': '#3498db', 'secondaryColor': '#16a085', 'tertiaryColor': '#2980b9'}}}%%
graph TD
    classDef foundationModels fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white,font-weight:bold
    classDef earthMemory fill:#16a085,stroke:#1abc9c,stroke-width:2px,color:white,font-weight:bold
    classDef contextNodes fill:#9b59b6,stroke:#8e44ad,stroke-width:2px,color:white
    classDef intelligenceNodes fill:#f39c12,stroke:#f1c40f,stroke-width:2px,color:white
    classDef memoryNode fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:white,font-weight:bold
    classDef appNode fill:#2c3e50,stroke:#34495e,stroke-width:2px,color:white,font-weight:bold
    
    A[🤖 Foundation Models] -->|Augmented with| B[🌍 Earth Memory]
    B -->|Provides| C[📍 Spatial Context]
    B -->|Provides| D[⏱️ Temporal Context]
    B -->|Provides| E[🌱 Environmental Context]
    C -->|Enables| F[📌 Location-Aware Intelligence]
    D -->|Enables| G[⏰ Time-Aware Intelligence]
    E -->|Enables| H[🌿 Environment-Aware Intelligence]
    F --> I[🧠 Collective AGI Memory]
    G --> I
    H --> I
    I -->|Powers| J[🚀 Next-Gen AI Applications]
    
    A:::foundationModels
    B:::earthMemory
    C:::contextNodes
    D:::contextNodes
    E:::contextNodes
    F:::intelligenceNodes
    G:::intelligenceNodes
    H:::intelligenceNodes
    I:::memoryNode
    J:::appNode

    linkStyle 0 stroke:#3498db,stroke-width:2px,stroke-dasharray: 5 5
    linkStyle 1,2,3 stroke:#16a085,stroke-width:2px
    linkStyle 4,5,6 stroke:#9b59b6,stroke-width:2px

🏗️ Core Architecture

The system architecture implements a scientific approach to memory management:

graph TB
    classDef primary fill:#2c3e50,stroke:#34495e,stroke-width:2px,color:white,font-weight:bold
    classDef secondary fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white
    classDef tertiary fill:#1abc9c,stroke:#16a085,stroke-width:2px,color:white
    
    A[Client Application]:::primary --> B[Memory Manager]:::primary
    B --> C[Data Acquisition]:::secondary
    B --> D[Memory Store]:::secondary
    B --> E[Earth Analyzers]:::secondary
    B --> F[AI Integration]:::secondary
    
    C --> C1[Satellite Data]:::tertiary
    C --> C2[Vector Data]:::tertiary
    C --> C3[Sensor Data]:::tertiary
    C --> C4[Environmental APIs]:::tertiary
    
    D --> D1[Hot Memory]:::tertiary
    D --> D2[Warm Memory]:::tertiary
    D --> D3[Cold Memory]:::tertiary
    D --> D4[Glacier Storage]:::tertiary
    
    E --> E1[Terrain Analysis]:::tertiary
    E --> E2[Climate Analysis]:::tertiary
    E --> E3[Environmental Impact]:::tertiary
    E --> E4[Urban Development]:::tertiary
    
    F --> F1[Model Connectors]:::tertiary
    F --> F2[Context Formation]:::tertiary
    F --> F3[Prompt Engineering]:::tertiary
    F --> F4[Response Validation]:::tertiary

Data Processing Workflow

The scientific processing pipeline ensures data integrity and accessibility:

%%{init: {'theme': 'dark', 'themeVariables': { 'primaryColor': '#1e293b', 'primaryTextColor': '#ffffff', 'primaryBorderColor': '#334155', 'lineColor': '#60a5fa', 'secondaryColor': '#10b981', 'tertiaryColor': '#3b82f6'}}}%%
sequenceDiagram
    participant Client as 📱 Client Application
    participant MM as 🧠 Memory Manager
    participant DA as 🛰️ Data Acquisition
    participant MS as 💾 Memory Store
    participant EA as 🔍 Earth Analyzers
    participant AI as 🤖 AI Models
    
    Client->>MM: Request Analysis
    activate MM
    Note over MM: Orchestrates the entire workflow<br/>with parallel processing
    
    par Data Collection Phase
        MM->>DA: Fetch Earth Data
        activate DA
        Note over DA: Multi-source acquisition with<br/>priority-based scheduling
        DA-->>MM: Return Raw Data
        deactivate DA
    and Memory Check Phase
        MM->>MS: Query Existing Memories
        activate MS
        Note over MS: Intelligent caching with<br/>tiered storage strategy
        MS-->>MM: Return Cached Results
        deactivate MS
    end
    
    MM->>EA: Process Earth Data
    activate EA
    Note over EA: 15+ specialized analyzers<br/>running asynchronously
    
    par Parallel Analysis
        EA->>EA: Terrain Analysis
        EA->>EA: Climate Analysis
        EA->>EA: Environmental Impact
        EA->>EA: Urban Development
    end
    
    EA-->>MM: Return Analysis Results
    deactivate EA
    
    MM->>AI: Enhance with AI Models
    activate AI
    Note over AI: Multiple model integration<br/>with Earth-grounding
    AI-->>MM: Return Enhanced Results
    deactivate AI
    
    MM->>MS: Store Results
    activate MS
    Note over MS: Multi-tier storage based on<br/>access patterns & importance
    MS-->>MM: Confirm Storage Complete
    deactivate MS
    
    MM-->>Client: Return Comprehensive Analysis
    deactivate MM
    
    Note over Client,AI: Complete data lifecycle with<br/>adaptive memory management

Advanced Data Flow Architecture

The memories-dev framework implements a sophisticated data flow architecture that transforms raw Earth observation data into actionable intelligence through a series of optimized processing stages:

%%{init: {'theme': 'dark', 'themeVariables': { 'primaryColor': '#0f172a', 'primaryTextColor': '#f8fafc', 'primaryBorderColor': '#334155', 'lineColor': '#3b82f6', 'secondaryColor': '#10b981', 'tertiaryColor': '#8b5cf6'}}}%%
graph LR
    classDef ingestion fill:#1d4ed8,stroke:#1e40af,stroke-width:2px,color:white,font-weight:bold
    classDef processing fill:#b91c1c,stroke:#991b1b,stroke-width:2px,color:white,font-weight:bold
    classDef storage fill:#047857,stroke:#065f46,stroke-width:2px,color:white,font-weight:bold
    classDef analytics fill:#7c3aed,stroke:#6d28d9,stroke-width:2px,color:white,font-weight:bold
    classDef delivery fill:#9a3412,stroke:#9a3412,stroke-width:2px,color:white,font-weight:bold
    
    %% Data Ingestion Nodes
    A1[Satellite Imagery] --> A
    A2[Vector Databases] --> A
    A3[Sensor Networks] --> A
    A4[Environmental APIs] --> A
    A[Data Ingestion Engine] --> B
    
    %% Data Processing Nodes
    B --> B1[Data Cleaning]
    B --> B2[Feature Extraction]
    B --> B3[Temporal Alignment]
    B --> B4[Spatial Registration]
    B[Multi-Modal Processing] --> C
    
    %% Storage Nodes
    C --> C1[Hot Memory Cache]
    C --> C2[Warm Vector Store]
    C --> C3[Cold Object Storage]
    C --> C4[Glacier Archive]
    C[Adaptive Memory System] --> D
    
    %% Analytics Nodes
    D --> D1[Geospatial Analytics]
    D --> D2[Time Series Analytics]
    D --> D3[Change Detection]
    D --> D4[Correlation Engine]
    D[Earth Intelligence Suite] --> E
    
    %% Delivery Nodes
    E --> E1[AI Model Integration]
    E --> E2[Application APIs]
    E --> E3[Visualization Tools]
    E --> E4[Export Services]
    E[Insight Delivery] --> F
    
    F[Decision Intelligence]
    
    %% Classifications
    A1:::ingestion
    A2:::ingestion
    A3:::ingestion
    A4:::ingestion
    A:::ingestion
    
    B1:::processing
    B2:::processing
    B3:::processing
    B4:::processing
    B:::processing
    
    C1:::storage
    C2:::storage
    C3:::storage
    C4:::storage
    C:::storage
    
    D1:::analytics
    D2:::analytics
    D3:::analytics
    D4:::analytics
    D:::analytics
    
    E1:::delivery
    E2:::delivery
    E3:::delivery
    E4:::delivery
    E:::delivery
    
    F:::delivery
Key Differential Features
Processing StageCapabilitiesBenefits
Data IngestionMulti-source acquisition, format normalization, quality filteringComprehensive data coverage with quality guarantees
Processing EngineParallel processing, feature extraction, temporal/spatial alignmentEfficient handling of heterogeneous Earth data
Memory SystemTiered storage, adaptive caching, compression, encryptionOptimized performance with cost-efficiency
Earth Intelligence15+ specialized analyzers, multi-dimensional scoringAdvanced insights across physical environment domains
Insight DeliveryModel integration, API exposure, visualizationActionable intelligence for applications

This advanced architecture enables memories-dev to process terabytes of Earth observation data with exceptional efficiency, transforming raw data into structured memory that grounds AI systems in physical reality.

💾 Memory System Design

Our memory system implements a scientifically-validated approach to data organization:

graph LR
    classDef memory fill:#2c3e50,stroke:#34495e,stroke-width:2px,color:white,font-weight:bold
    classDef storage fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white
    classDef features fill:#1abc9c,stroke:#16a085,stroke-width:2px,color:white
    
    A[Memory Manager]:::memory --> B[Hot Memory]:::memory
    A --> C[Warm Memory]:::memory
    A --> D[Cold Memory]:::memory
    A --> E[Glacier Storage]:::memory
    
    subgraph Storage Technologies
        B --> F[In-Memory Vector Store]:::storage
        C --> G[SSD-based Database]:::storage
        D --> H[Object Storage]:::storage
        E --> I[Archive Storage]:::storage
    end
    
    subgraph Memory Features
        A --> J[Auto-Tiering]:::features
        A --> K[Compression]:::features
        A --> L[Encryption]:::features
        A --> M[Analytics]:::features
    end
    
    subgraph Scientific Validation
        A --> N[Data Integrity]:::features
        A --> O[Recall Metrics]:::features
        A --> P[Precision Tests]:::features
        A --> Q[Latency Analysis]:::features
    end

Memory Tier Specifications

Memory TierAccess TimeStorage MediumUse CaseData Types
Hot Memory<10msRAM-based vector storeCurrent session data, active location analysisEmbeddings, recent queries, active location context
Warm Memory<100msSSD-based databaseRecent locations, frequently accessed regionsRecent satellite imagery, vector data for common areas
Cold Memory<1sObject storageHistorical analysis, less frequent locationsHistorical imagery, environmental data series
Glacier<60sArchive storageLong-term change detection, baseline dataBaseline measurements, long-term environmental data

🔍 Earth Analyzers

Our specialized Earth analyzers extract scientific insights from raw observation data:

%%{init: {'theme': 'forest', 'themeVariables': { 'primaryColor': '#2c3e50', 'primaryTextColor': '#ecf0f1', 'primaryBorderColor': '#34495e', 'lineColor': '#3498db', 'secondaryColor': '#16a085', 'tertiaryColor': '#2980b9'}}}%%
graph TD
    classDef mainSystem fill:#1e293b,stroke:#334155,stroke-width:2px,color:white,font-weight:bold
    classDef terrainAnalyzer fill:#3b82f6,stroke:#2563eb,stroke-width:2px,color:white,font-weight:bold
    classDef climateAnalyzer fill:#ef4444,stroke:#dc2626,stroke-width:2px,color:white,font-weight:bold
    classDef environmentalAnalyzer fill:#10b981,stroke:#059669,stroke-width:2px,color:white,font-weight:bold
    classDef landAnalyzer fill:#8b5cf6,stroke:#7c3aed,stroke-width:2px,color:white,font-weight:bold
    classDef waterAnalyzer fill:#0ea5e9,stroke:#0284c7,stroke-width:2px,color:white,font-weight:bold
    classDef geologicalAnalyzer fill:#f59e0b,stroke:#d97706,stroke-width:2px,color:white,font-weight:bold
    classDef urbanAnalyzer fill:#6366f1,stroke:#4f46e5,stroke-width:2px,color:white,font-weight:bold
    classDef bioAnalyzer fill:#84cc16,stroke:#65a30d,stroke-width:2px,color:white,font-weight:bold
    classDef airAnalyzer fill:#06b6d4,stroke:#0891b2,stroke-width:2px,color:white,font-weight:bold
    classDef noiseAnalyzer fill:#ec4899,stroke:#db2777,stroke-width:2px,color:white,font-weight:bold
    classDef solarAnalyzer fill:#eab308,stroke:#ca8a04,stroke-width:2px,color:white,font-weight:bold
    classDef walkAnalyzer fill:#14b8a6,stroke:#0d9488,stroke-width:2px,color:white,font-weight:bold
    classDef viewAnalyzer fill:#8b5cf6,stroke:#7c3aed,stroke-width:2px,color:white,font-weight:bold
    classDef microAnalyzer fill:#22c55e,stroke:#16a34a,stroke-width:2px,color:white,font-weight:bold
    classDef propertyAnalyzer fill:#f43f5e,stroke:#e11d48,stroke-width:2px,color:white,font-weight:bold
    classDef infraAnalyzer fill:#6366f1,stroke:#4f46e5,stroke-width:2px,color:white,font-weight:bold
    classDef subAnalyzer fill:#64748b,stroke:#475569,stroke-width:1px,color:white
    
    A[🧠 Earth Memory Analyzers] --> B[🏔️ TerrainAnalyzer]
    A --> C[🌡️ ClimateDataFetcher]
    A --> D[🌱 EnvironmentalImpactAnalyzer]
    A --> E[🏞️ LandUseClassifier]
    A --> F[💧 WaterResourceAnalyzer]
    A --> G[🪨 GeologicalDataFetcher]
    A --> H[🏙️ UrbanDevelopmentAnalyzer]
    A --> I[🦋 BiodiversityAnalyzer]
    A --> J[💨 AirQualityMonitor]
    A --> K[🔊 NoiseAnalyzer]
    A --> L[☀️ SolarPotentialCalculator]
    A --> M[🚶 WalkabilityAnalyzer]
    A --> N[👁️ ViewshedAnalyzer]
    A --> O[🌤️ MicroclimateAnalyzer]
    A --> P[💰 PropertyValuePredictor]
    A --> Q[🛣️ InfrastructureAnalyzer]
    
    B --> B1[Elevation Analysis]
    B --> B2[Slope Calculation]
    B --> B3[Aspect Determination]
    B --> B4[Landslide Risk Assessment]
    
    C --> C1[Temperature Trend Analysis]
    C --> C2[Precipitation Pattern Recognition]
    C --> C3[Climate Change Projection]
    C --> C4[Extreme Weather Risk Modeling]
    
    F --> F1[Flood Risk Assessment]
    F --> F2[Water Quality Analysis]
    F --> F3[Drought Risk Modeling]
    F --> F4[Watershed Analysis]
    
    H --> H1[Urban Growth Pattern Analysis]
    H --> H2[Development Plan Extraction]
    H --> H3[Infrastructure Network Mapping]
    H --> H4[Zoning Change Detection]
    
    A:::mainSystem
    B:::terrainAnalyzer
    C:::climateAnalyzer
    D:::environmentalAnalyzer
    E:::landAnalyzer
    F:::waterAnalyzer
    G:::geologicalAnalyzer
    H:::urbanAnalyzer
    I:::bioAnalyzer
    J:::airAnalyzer
    K:::noiseAnalyzer
    L:::solarAnalyzer
    M:::walkAnalyzer
    N:::viewAnalyzer
    O:::microAnalyzer
    P:::propertyAnalyzer
    Q:::infraAnalyzer
    
    B1:::subAnalyzer
    B2:::subAnalyzer
    B3:::subAnalyzer
    B4:::subAnalyzer
    C1:::subAnalyzer
    C2:::subAnalyzer
    C3:::subAnalyzer
    C4:::subAnalyzer
    F1:::subAnalyzer
    F2:::subAnalyzer
    F3:::subAnalyzer
    F4:::subAnalyzer
    H1:::subAnalyzer
    H2:::subAnalyzer
    H3:::subAnalyzer
    H4:::subAnalyzer

Scientific Methodologies

Each analyzer implements validated scientific methodologies:

AnalyzerScientific MethodData SourcesValidation Approach
TerrainAnalyzerDigital Elevation Model AnalysisSRTM, ASTER GDEM, LiDARGround truth comparison with surveyed elevations
ClimateDataFetcherTime-series ClimatologyCMIP6, ERA5, GLDASCross-validation with meteorological stations
WaterResourceAnalyzerHydrological ModelingSentinel-1/2, Landsat, GRACEValidation against stream gauges and river monitoring
BiodiversityAnalyzerEcosystem AssessmentGBIF, iNaturalist, MODISField surveys and expert verification
AirQualityMonitorAtmospheric Science ModelsSentinel-5P, CAMS, AirNowCorrelation with ground station measurements

🤖 AI Integration

The framework seamlessly integrates with leading AI models and platforms:

%%{init: {'theme': 'forest', 'themeVariables': { 'primaryColor': '#1f77b4', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0d6efd', 'lineColor': '#3498db', 'secondaryColor': '#16a085', 'tertiaryColor': '#2980b9'}}}%%
graph TD
    classDef foundationModels fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white,font-weight:bold
    classDef earthMemory fill:#16a085,stroke:#1abc9c,stroke-width:2px,color:white,font-weight:bold
    classDef contextNodes fill:#9b59b6,stroke:#8e44ad,stroke-width:2px,color:white,font-weight:bold
    classDef intelligenceNodes fill:#f39c12,stroke:#f1c40f,stroke-width:2px,color:white,font-weight:bold
    classDef memoryNode fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:white,font-weight:bold
    classDef appNode fill:#2c3e50,stroke:#34495e,stroke-width:2px,color:white,font-weight:bold
    
    A[Foundation Models] -->|Augmented with| B[Earth Memory System]
    B -->|Provides| C[Spatial Context Engine]
    B -->|Provides| D[Temporal Context Engine]
    B -->|Provides| E[Environmental Context Engine]
    C -->|Enables| F[Location-Aware Intelligence]
    D -->|Enables| G[Temporal Evolution Intelligence]
    E -->|Enables| H[Environmental Relationship Intelligence]
    F --> I[Collective AGI Memory]
    G --> I
    H --> I
    I -->|Powers| J[Scientific AI Applications]
    
    A:::foundationModels
    B:::earthMemory
    C:::contextNodes
    D:::contextNodes
    E:::contextNodes
    F:::intelligenceNodes
    G:::intelligenceNodes
    H:::intelligenceNodes
    I:::memoryNode
    J:::appNode

    linkStyle 0 stroke:#3498db,stroke-width:2px,stroke-dasharray: 5 5
    linkStyle 1,2,3 stroke:#16a085,stroke-width:2px
    linkStyle 4,5,6 stroke:#9b59b6,stroke-width:2px

Supported AI Models

ProviderModelsKey FeaturesIntegration Type
OpenAIGPT-4/3.5 FamilyFunction calling, streaming, embeddingsAPI
AnthropicClaude 3 FamilyStreaming, vision, long contextAPI
DeepSeek AIDeepSeek Coder, ChatSpecialized coding capabilitiesAPI & Local
Mistral AIMistral Medium/SmallEfficient, high-performanceAPI & Local
CohereCommand/EmbedAdvanced embeddings, multilingualAPI
MetaLlama 3 FamilyOpen weights, fine-tuning supportLocal
Local ModelsQuantized & GGUFOffline operation, customizationLocal

Multi-Model Architecture

from memories.models.load_model import LoadModel
from memories.models.multi_model import MultiModelInference

# Initialize multiple models for ensemble analysis
models = {
    "openai": LoadModel(model_provider="openai", model_name="gpt-4"),
    "anthropic": LoadModel(model_provider="anthropic", model_name="claude-3-opus"),
    "deepseek": LoadModel(model_provider="deepseek-ai", model_name="deepseek-coder")
}

# Create multi-model inference engine
multi_model = MultiModelInference(models=models)

# Analyze property with Earth memory integration
responses = multi_model.get_responses_with_earth_memory(
    query="Analyze environmental risks for this property",
    location={"lat": 37.7749, "lon": -122.4194},
    earth_memory_analyzers=["terrain", "climate", "water"]
)

# Compare model assessments
for provider, response in responses.items():
    print(f"\n--- {provider.upper()} ASSESSMENT ---")
    print(response["analysis"])

🚀 Deployment Architecture

memories-dev supports three scientifically-validated deployment architectures:

1. Standalone Deployment

Optimized for research environments and single-instance deployments:

graph TD
    Client[Client Applications] --> API[API Gateway]
    API --> Server[Memories Server]
    Server --> Models[Model System]
    Server --> DataAcq[Data Acquisition]
    Models --> LocalModels[Local Models]
    Models --> APIModels[API-based Models]
    DataAcq --> VectorData[Vector Data Sources]
    DataAcq --> SatelliteData[Satellite Data]
    Server --> Storage[Persistent Storage]

2. Consensus Deployment

Designed for high-reliability scientific computing environments:

graph TD
    Client[Client Applications] --> LB[Load Balancer]
    LB --> Node1[Node 1]
    LB --> Node2[Node 2]
    LB --> Node3[Node 3]
    
    subgraph "Consensus Group"
        Node1 <--> Node2
        Node2 <--> Node3
        Node3 <--> Node1
    end
    
    Node1 --> Models1[Model System]
    Node2 --> Models2[Model System]
    Node3 --> Models3[Model System]
    
    Node1 --> DataAcq1[Data Acquisition]
    Node2 --> DataAcq2[Data Acquisition]
    Node3 --> DataAcq3[Data Acquisition]
    
    subgraph "Shared Storage"
        Storage[Distributed Storage]
    end
    
    Node1 --> Storage
    Node2 --> Storage
    Node3 --> Storage

3. Swarmed Deployment

For large-scale scientific computing and production environments:

graph TD
    Client[Client Applications] --> LB[Load Balancer]
    LB --> API1[API Gateway 1]
    LB --> API2[API Gateway 2]
    LB --> API3[API Gateway 3]
    
    subgraph "Manager Nodes"
        Manager1[Manager 1]
        Manager2[Manager 2]
        Manager3[Manager 3]
        
        Manager1 <--> Manager2
        Manager2 <--> Manager3
        Manager3 <--> Manager1
    end
    
    API1 --> Manager1
    API2 --> Manager2
    API3 --> Manager3
    
    subgraph "Worker Nodes"
        Worker1[Worker 1]
        Worker2[Worker 2]
        Worker3[Worker 3]
        Worker4[Worker 4]
        Worker5[Worker 5]
    end
    
    Manager1 --> Worker1
    Manager1 --> Worker2
    Manager2 --> Worker3
    Manager2 --> Worker4
    Manager3 --> Worker5
    
    subgraph "Shared Services"
        Registry[Container Registry]
        Config[Configuration Store]
        Secrets[Secrets Management]
        Monitoring[Monitoring & Logging]
    end
    
    Manager1 --> Registry
    Manager1 --> Config
    Manager1 --> Secrets
    Manager1 --> Monitoring

Cloud Provider Support

Cloud ProviderFeaturesDeployment ModelsHardware Support
AWSAuto-scaling, S3 integration, Lambda functionsAllNVIDIA GPUs, Graviton (ARM)
GCPKubernetes, TPU support, Cloud StorageAllNVIDIA GPUs, TPUs
AzureAKS, Container Apps, Blob StorageAllNVIDIA GPUs, AMD MI
On-premisesCustom hardware support, airgapped operationAllNVIDIA GPUs, AMD MI, Intel GPUs

📊 Benchmarks

memories-dev has been rigorously benchmarked across multiple dimensions:

Performance Metrics

The framework undergoes continuous performance testing across different deployment architectures:

  • Standalone: Optimized for research and development environments
  • Consensus: Designed for high-reliability production deployments
  • Swarmed: Engineered for high-throughput, large-scale operations

Performance testing focuses on key metrics including query latency, memory throughput, data ingestion rates, and concurrent user capacity. Full benchmark reports are available in the documentation.

Analysis Accuracy

Our Earth analyzers are validated against scientific ground truth data:

  • Terrain Analysis: Validation against surveyed elevation data and LiDAR measurements
  • Climate Prediction: Verification with meteorological station records and reanalysis datasets
  • Water Resource Assessment: Comparison with stream gauge measurements and satellite altimetry
  • Urban Development: Validation with municipal records and high-resolution satellite imagery
  • Biodiversity Assessment: Correlation with field surveys and ecological monitoring sites

Detailed methodology and validation reports are available in our scientific documentation.

Memory System Performance

The multi-tiered memory architecture is designed for optimal performance:

  • Hot Memory: In-memory vector storage for sub-10ms access to active data
  • Warm Memory: SSD-based storage for frequently accessed geographic regions
  • Cold Memory: Object storage for less frequently accessed historical data
  • Glacier: Archive storage for baseline measurements and long-term storage

Each tier is continuously optimized for access patterns, compression ratios, and storage efficiency.

📚 Research & Documentation

Technical Publications

For researchers interested in the technical foundations of the framework:

Our work intersects with several active research domains:

  1. Geospatial AI and machine learning for Earth observation data
  2. Temporally aware memory systems for environmental monitoring
  3. Multi-modal information retrieval for scientific applications
  4. Grounding mechanisms for large language models
  5. Spatial reasoning in artificial intelligence

Documentation Resources

For comprehensive documentation, visit memories-dev.readthedocs.io, which includes:

  • Complete API reference
  • Detailed tutorials and examples
  • System architecture specifications
  • Benchmark methodology and results
  • Scientific validation protocols

🏗️ Installation

Standard Installation

# Basic installation
pip install memories-dev

# With GPU support
pip install memories-dev[gpu]

# Full installation with all features
pip install memories-dev[all]

Development Installation

# Clone repository
git clone https://github.com/Vortx-AI/memories-dev.git
cd memories-dev

# Install development dependencies
pip install -e ".[dev]"

# Install documentation tools
pip install -e ".[docs]"

Docker Deployment

# Pull the official Docker image
docker pull vortx/memories-dev:2.0.3

# Run with GPU support
docker run --gpus all -p 8000:8000 -v ./data:/app/data vortx/memories-dev:2.0.3

📝 Usage Examples

Setting Up Earth Memory

from memories.earth import OvertureClient, SentinelClient
import os

# Initialize clients
overture_client = OvertureClient(
    api_key=os.getenv("OVERTURE_API_KEY")
)

sentinel_client = SentinelClient(
    username=os.getenv("SENTINEL_USER"),
    password=os.getenv("SENTINEL_PASSWORD")
)

# Configure memory system
from memories import MemoryStore, Config

memory_config = Config(
    storage_path="./earth_memory",
    hot_memory_size=50,  # GB
    warm_memory_size=200,  # GB
    cold_memory_size=1000,  # GB
    vector_store="milvus",
    embedding_model="text-embedding-3-small"
)

memory_store = MemoryStore(memory_config)

Real Estate Analysis

from examples.real_estate_agent import RealEstateAgent
from memories import MemoryStore, Config

# Initialize memory store
config = Config(
    storage_path="./real_estate_data",
    hot_memory_size=50,
    warm_memory_size=200,
    cold_memory_size=1000
)
memory_store = MemoryStore(config)

# Initialize agent with earth memory
agent = RealEstateAgent(
    memory_store,
    enable_earth_memory=True,
    analyzers=["terrain", "climate", "water", "environmental"]
)

# Add property and analyze
property_id = await agent.add_property(property_data)
analysis = await agent.analyze_property_environment(property_id)

print(f"Property added: {property_id}")
print(f"Environmental analysis: {analysis}")

Environmental Monitoring

from memories.analyzers import ChangeDetector
from datetime import datetime, timedelta

# Initialize change detector
detector = ChangeDetector(
    baseline_date=datetime(2020, 1, 1),
    comparison_dates=[
        datetime(2021, 1, 1),
        datetime(2022, 1, 1),
        datetime(2023, 1, 1),
        datetime(2024, 1, 1)
    ]
)

# Detect environmental changes
changes = await detector.analyze_changes(
    location={"lat": 37.7749, "lon": -122.4194, "radius": 5000},
    indicators=["vegetation", "water_bodies", "urban_development"],
    visualization=True
)

# Present findings
detector.visualize_changes(changes)
detector.generate_report(changes, format="pdf")

🤝 Contributing

We welcome contributions from the scientific community! See CONTRIBUTING.md for guidelines.

📄 License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Built with 💜 by the memories-dev team

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc