Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

mixscatter

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mixscatter

A versatile tool for calculating scattering functions of particle mixtures, particularly for small-angle scattering (SAS) or static and dynamic light scattering (SLS & DLS) applications.

  • 0.2.3
  • PyPI
  • Socket score

Maintainers
1

mixscatter

Python PyPI License: MIT Test Lint Type Check Docs Nox

Table of Contents

Overview

mixscatter is a pure python package for the calculation of scattering functions of multi-component mixtures of interacting spherical scatterers in the Born approximation (Rayleigh-Gans-Debye scattering).

Key Features:

  • Calculation of scattering amplitudes, measurable intensities, form factors, structure factors, and diffusion coefficients.
  • Flexible construction of systems with arbitrary compositions and complex scattering length density profiles.
  • Suitable for researchers and developers working on particulate systems characterization.

Take a look at these publications if you are interested:

Installation

mixscatter is available on the Python Package Index (PyPI).

Prerequisites

Ensure you have Python 3.10 or higher installed.

Using pip

Install the package via pip:

pip install mixscatter

The source code is currently hosted on GitHub at: https://github.com/joelmaier/mixscatter

Documentation

Find the documentation on GitHub Pages: https://joelmaier.github.io/mixscatter/

Example Showcase

This example demonstrates the fundamental capabilities of mixscatter. For a comprehensive walk-through, refer to the Getting Started Guide.

Run this code to produce the figure below.

import numpy as np
import matplotlib.pyplot as plt

from mixscatter.mixture import Mixture
from mixscatter.scatteringmodel import SimpleCoreShell
from mixscatter.liquidstructure import PercusYevick
from mixscatter import (
    measurable_intensity,
    measurable_structure_factor,
    measurable_diffusion_coefficient
)

if __name__ == "__main__":
    plt.ion()
    plt.close("all")
    fig, ax = plt.subplots(3, 2, figsize=(6, 8), layout="constrained")

    # Initialize a particle mixture
    mixture = Mixture(radius=[100, 250], number_fraction=[0.4, 0.6])

    # Visualize mixture composition
    ax[0, 0].stem(mixture.radius, mixture.number_fraction)
    ax[0, 0].set_xlim(0, 300)
    ax[0, 0].set_ylim(-0.05, 1.05)
    ax[0, 0].set_xlabel("particle radius")
    ax[0, 0].set_ylabel("number fraction")

    # Provide a model for the optical properties of the system
    wavevector = np.linspace(1e-3, 7e-2, 1000)
    scattering_model = SimpleCoreShell(
        wavevector=wavevector,
        mixture=mixture,
        core_to_total_ratio=0.5,
        core_contrast=1.0,
        shell_contrast=0.5
    )

    # Visualize SLD profile
    distance = np.linspace(0, 350, 1000)
    for i, particle in enumerate(scattering_model.particles):
        profile = particle.get_profile(distance)
        ax[0, 1].plot(distance, profile, label=f"particle {i + 1}")
    ax[0, 1].set_xlim(0, 400)
    ax[0, 1].set_xlabel("distance from particle center")
    ax[0, 1].set_ylabel("scattering contrast")
    ax[0, 1].legend()

    # Visualize individual and average form factor(s)
    for i, form_factor in enumerate(scattering_model.single_form_factor):
        ax[1, 0].plot(wavevector, form_factor, label=f"particle {i + 1}")
    ax[1, 0].plot(
        wavevector, scattering_model.average_form_factor, label="average"
    )
    ax[1, 0].set_yscale("log")
    ax[1, 0].set_ylim(1e-6, 3e0)
    ax[1, 0].legend()
    ax[1, 0].set_xlabel("wavevector")
    ax[1, 0].set_ylabel("form factor")

    # Provide a model for the liquid structure
    liquid_structure = PercusYevick(
        wavevector=wavevector, mixture=mixture, volume_fraction_total=0.45
    )

    # Calculate the scattered intensity of the system
    intensity = measurable_intensity(liquid_structure, scattering_model)
    ax[1, 1].plot(wavevector, intensity)
    ax[1, 1].set_yscale("log")
    ax[1, 1].set_xlabel("wavevector")
    ax[1, 1].set_ylabel("intensity")

    # Calculate the experimentally obtainable, measurable structure factor
    structure_factor = measurable_structure_factor(
        liquid_structure, scattering_model
    )
    ax[2, 0].plot(wavevector, structure_factor)
    ax[2, 0].set_xlabel("wavevector")
    ax[2, 0].set_ylabel("structure factor")

    # Calculate the effective Stokes-Einstein diffusion coefficient
    # which would be obtained from a cumulant analysis in
    # dynamic light scattering
    diffusion_coefficient = measurable_diffusion_coefficient(
        scattering_model, thermal_energy=1.0, viscosity=1.0 / (6.0 * np.pi)
    )
    # Visualize the apparent hydrodynamic radius, which is
    # proportional to 1/diffusion_coefficient
    ax[2, 1].plot(wavevector, 1 / diffusion_coefficient)
    ax[2, 1].set_xlabel("wavevector")
    ax[2, 1].set_ylabel("apparent hydrodynamic radius")

    fig.savefig("simple_example_figure.png", dpi=300)

Example Figure

Contributing

Contributions are welcome! If you find any bugs or want to request features, feel free to get in touch or create an issue.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc