Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
ome_types
provides a set of python dataclasses and utility functions for
parsing the OME-XML
format into
fully-typed python objects for interactive or programmatic access in python. It
can also take these python objects and output them into valid OME-XML.
ome_types
is a pure python library and does not require a Java virtual
machine.
Note: The generated python code can be seen in the
built
branch. (Read the code generation section for details).
pip install ome-types
With all optional dependencies:
# lxml => if you ...
# - want to use lxml as the XML parser
# - want to validate XML against the ome.xsd schema
# - want to use XML documents older than the 2016-06 schema
# pint => if you want to use object.<field>_quantity properties
# xmlschema => if you want to validate XML but DON'T want lxml
pip install ome-types[lxml,pint]
conda install -c conda-forge ome-types
pip install git+https://github.com/tlambert03/ome-types.git
ome_types.model.OME
(The XML string/file will be validated against the ome.xsd schema)
from ome_types import from_xml
ome = from_xml('tests/data/hcs.ome.xml')
from ome_types import from_tiff
ome2 = from_tiff('tests/data/ome.tiff')
Both from_xml
and from_tiff
return an instance of ome_types.model.OME
. All
classes in ome_types.model
follow the naming conventions of the OME data
model,
but use snake_case
attribute names instead of CamelCase
, to be consistent
with the python ecosystem.
In [2]: ome = from_xml('tests/data/hcs.ome.xml')
In [3]: ome
Out[3]:
OME(
images=[<1 Images>],
plates=[<1 Plates>],
)
In [4]: ome.plates[0]
Out[4]:
Plate(
id='Plate:1',
name='Control Plate',
column_naming_convention='letter',
columns=12,
row_naming_convention='number',
rows=8,
wells=[<1 Wells>],
)
In [5]: ome.images[0]
Out[5]:
Image(
id='Image:0',
name='Series 1',
pixels=Pixels(
id='Pixels:0',
dimension_order='XYCZT',
size_c=3,
size_t=16,
size_x=1024,
size_y=1024,
size_z=1,
type='uint16',
bin_data=[<1 Bin_Data>],
channels=[<3 Channels>],
physical_size_x=0.207,
physical_size_y=0.207,
time_increment=120.1302,
),
acquisition_date=datetime.fromisoformat('2008-02-06T13:43:19'),
description='An example OME compliant file, based on Olympus.oib',
)
In [6]: from ome_types.model.simple_types import UnitsLength
In [7]: from ome_types.model.channel import AcquisitionMode
In [8]: ome.images[0].description = "This is the new description."
In [9]: ome.images[0].pixels.physical_size_x = 350.0
In [10]: ome.images[0].pixels.physical_size_x_unit = UnitsLength.NANOMETER
In [11]: for c in ome.images[0].pixels.channels:
c.acquisition_mode = AcquisitionMode.SPINNING_DISK_CONFOCAL
In [12]: from ome_types.model import Instrument, Microscope, Objective, InstrumentRef
In [13]: microscope_mk4 = Microscope(
manufacturer='OME Instruments',
model='Lab Mk4',
serial_number='L4-5678',
)
In [14]: objective_40x = Objective(
manufacturer='OME Objectives',
model='40xAir',
nominal_magnification=40.0,
)
In [15]: instrument = Instrument(
microscope=microscope_mk4,
objectives=[objective_40x],
)
In [16]: ome.instruments.append(instrument)
In [17]: ome.images[0].instrument_ref = InstrumentRef(id=instrument.id)
In [18]: ome.instruments
Out[18]:
[Instrument(
id='Instrument:1',
microscope=Microscope(
manufacturer='OME Instruments',
model='Lab Mk4',
serial_number='L4-5678',
),
objectives=[<1 Objectives>],
)]
Finally, you can generate the OME-XML representation of the OME model object,
for writing to a standalone .ome.xml
file or inserting into the header of an
OME-TIFF file:
In [19]: from ome_types import to_xml
In [20]: print(to_xml(ome))
<OME ...>
<Plate ColumnNamingConvention="letter" Columns="12" ID="Plate:1" ...>
...
</Plate>
<Instrument ID="Instrument:1">
<Microscope Manufacturer="OME Instruments" Model="Lab Mk4" SerialNumber="L4-5678" />
<Objective Manufacturer="OME Objectives" Model="40xAir" ID="Objective:1"
NominalMagnification="40.0" />
</Instrument>
<Image ID="Image:0" Name="Series 1">
<AcquisitionDate>2008-02-06T13:43:19</AcquisitionDate>
<Description>This is the new description.</Description>
<InstrumentRef ID="Instrument:1" />
<Pixels ... PhysicalSizeX="350.0" PhysicalSizeXUnit="nm" ...>
<Channel AcquisitionMode="SpinningDiskConfocal" ...>
...
</Pixels>
</Image>
</OME>
The bulk of this library (namely, modules inside ome_types._autogenerated
) is
generated at install time, and is therefore not checked into source (or visible
in the main branch of this repo).
You can see the code generated by the main branch in the built branch
The package at src/ome_autogen
converts the ome.xsd
schema into valid
python code. To run the code generation script in a development environment,
clone this repository and run:
python -m src.ome_autogen
The documentation and types for the full model can be in the API Reference
To clone and install this repository locally:
git clone https://github.com/tlambert03/ome-types.git
cd ome-types
pip install -e .[test,dev]
We use pre-commit
to run various code-quality checks during continuous
integration. If you'd like to make sure that your code will pass these checks
before you commit your code, you should install pre-commit
after cloning this
repository:
pre-commit install
If you modify anything in src/ome_autogen
, you may need to
regenerate the model with:
python -m src.ome_autogen
To run tests:
pytest
FAQs
Python dataclasses for the OME data model
We found that ome-types demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.