Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
This code release is aimed at two target audiences:
The latest release of Opacus can be installed via pip
:
pip install opacus
OR, alternatively, via conda
:
conda install -c conda-forge opacus
You can also install directly from the source for the latest features (along with its quirks and potentially occasional bugs):
git clone https://github.com/pytorch/opacus.git
cd opacus
pip install -e .
To train your model with differential privacy, all you need to do is to instantiate a PrivacyEngine
and pass your model, data_loader, and optimizer to the engine's make_private()
method to obtain their private counterparts.
# define your components as usual
model = Net()
optimizer = SGD(model.parameters(), lr=0.05)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1024)
# enter PrivacyEngine
privacy_engine = PrivacyEngine()
model, optimizer, data_loader = privacy_engine.make_private(
module=model,
optimizer=optimizer,
data_loader=data_loader,
noise_multiplier=1.1,
max_grad_norm=1.0,
)
# Now it's business as usual
The MNIST example shows an end-to-end run using Opacus. The examples folder contains more such examples.
Opacus 1.0 introduced many improvements to the library, but also some breaking changes. If you've been using Opacus 0.x and want to update to the latest release, please use this Migration Guide
We've built a series of IPython-based tutorials as a gentle introduction to training models with privacy and using various Opacus features.
The technical report introducing Opacus, presenting its design principles, mathematical foundations, and benchmarks can be found here.
Consider citing the report if you use Opacus in your papers, as follows:
@article{opacus,
title={Opacus: {U}ser-Friendly Differential Privacy Library in {PyTorch}},
author={Ashkan Yousefpour and Igor Shilov and Alexandre Sablayrolles and Davide Testuggine and Karthik Prasad and Mani Malek and John Nguyen and Sayan Ghosh and Akash Bharadwaj and Jessica Zhao and Graham Cormode and Ilya Mironov},
journal={arXiv preprint arXiv:2109.12298},
year={2021}
}
If you want to learn more about DP-SGD and related topics, check out our series of blogposts and talks:
Check out the FAQ page for answers to some of the most frequently asked questions about differential privacy and Opacus.
See the CONTRIBUTING file for how to help out. Do also check out the README files inside the repo to learn how the code is organized.
This code is released under Apache 2.0, as found in the LICENSE file.
FAQs
Train PyTorch models with Differential Privacy
We found that opacus demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.