Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Shrink Pandas DataFrames with precision safe schema inference.
pandas-downcast
finds the minimum viable type for each column, ensuring that resulting values
are within tolerance of original values.
pip install pandas-downcast
import pdcast as pdc
import numpy as np
import pandas as pd
data = {
"integers": np.linspace(1, 100, 100),
"floats": np.linspace(1, 1000, 100).round(2),
"booleans": np.random.choice([1, 0], 100),
"categories": np.random.choice(["foo", "bar", "baz"], 100),
}
df = pd.DataFrame(data)
# Downcast DataFrame to minimum viable schema.
df_downcast = pdc.downcast(df)
# Infer minimum schema for DataFrame.
schema = pdc.infer_schema(df)
# Coerce DataFrame to schema - required if converting float to Pandas Integer.
df_new = pdc.coerce_df(df, schema)
Smaller data types $\Rightarrow$ smaller memory footprint.
df.info()
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 100 entries, 0 to 99
# Data columns (total 4 columns):
# # Column Non-Null Count Dtype
# --- ------ -------------- -----
# 0 integers 100 non-null float64
# 1 floats 100 non-null float64
# 2 booleans 100 non-null int64
# 3 categories 100 non-null object
# dtypes: float64(2), int64(1), object(1)
# memory usage: 3.2+ KB
df_downcast.info()
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 100 entries, 0 to 99
# Data columns (total 4 columns):
# # Column Non-Null Count Dtype
# --- ------ -------------- -----
# 0 integers 100 non-null uint8
# 1 floats 100 non-null float32
# 2 booleans 100 non-null bool
# 3 categories 100 non-null category
# dtypes: bool(1), category(1), float32(1), uint8(1)
# memory usage: 932.0 bytes
Numerical data types will be downcast if the resulting values are within tolerance of the original values.
For details on tolerance for numeric comparison, see the notes on np.allclose
.
print(df.head())
# integers floats booleans categories
# 0 1.0 1.00 1 foo
# 1 2.0 11.09 0 baz
# 2 3.0 21.18 1 bar
# 3 4.0 31.27 0 bar
# 4 5.0 41.36 0 foo
print(df_downcast.head())
# integers floats booleans categories
# 0 1 1.000000 True foo
# 1 2 11.090000 False baz
# 2 3 21.180000 True bar
# 3 4 31.270000 False bar
# 4 5 41.360001 False foo
print(pdc.options.ATOL)
# >>> 1e-08
print(pdc.options.RTOL)
# >>> 1e-05
Tolerance can be set at the module level or passed in function arguments.
pdc.options.ATOL = 1e-10
pdc.options.RTOL = 1e-10
df_downcast_new = pdc.downcast(df)
Or
infer_dtype_kws = {
"ATOL": 1e-10,
"RTOL": 1e-10
}
df_downcast_new = pdc.downcast(df, infer_dtype_kws=infer_dtype_kws)
The floats
column is now kept as float64
to meet the tolerance requirement.
Values in the integers
column are still safely cast to uint8
.
df_downcast_new.info()
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 100 entries, 0 to 99
# Data columns (total 4 columns):
# # Column Non-Null Count Dtype
# --- ------ -------------- -----
# 0 integers 100 non-null uint8
# 1 floats 100 non-null float64
# 2 booleans 100 non-null bool
# 3 categories 100 non-null category
# dtypes: bool(1), category(1), float64(1), uint8(1)
# memory usage: 1.3 KB
Inferred schemas can be restricted to Numpy data types only.
# Downcast DataFrame to minimum viable Numpy schema.
df_downcast = pdc.downcast(df, numpy_dtypes_only=True)
# Infer minimum Numpy schema for DataFrame.
schema = pdc.infer_schema(df, numpy_dtypes_only=True)
The following example shows how downcasting data often leads to size reductions of greater than 70%, depending on the original types.
import pdcast as pdc
import pandas as pd
import seaborn as sns
df_dict = {df: sns.load_dataset(df) for df in sns.get_dataset_names()}
results = []
for name, df in df_dict.items():
size_pre = df.memory_usage(deep=True).sum()
df_post = pdc.downcast(df)
size_post = df_post.memory_usage(deep=True).sum()
shrinkage = int((1 - (size_post / size_pre)) * 100)
results.append(
{"dataset": name, "size_pre": size_pre, "size_post": size_post, "shrink_pct": shrinkage}
)
results_df = pd.DataFrame(results).sort_values("shrink_pct", ascending=False).reset_index(drop=True)
print(results_df)
dataset size_pre size_post shrink_pct
0 fmri 213232 14776 93
1 titanic 321240 28162 91
2 attention 5888 696 88
3 penguins 75711 9131 87
4 dots 122240 17488 85
5 geyser 21172 3051 85
6 gammas 500128 108386 78
7 anagrams 2048 456 77
8 planets 112663 30168 73
9 anscombe 3428 964 71
10 iris 14728 5354 63
11 exercise 3302 1412 57
12 flights 3616 1888 47
13 mpg 75756 43842 42
14 tips 7969 6261 21
15 diamonds 3184588 2860948 10
16 brain_networks 4330642 4330642 0
17 car_crashes 5993 5993 0
FAQs
Shrink Pandas DataFrames with precision safe schema inference.
We found that pandas-downcast demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.