Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pandas-downcast

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pandas-downcast

Shrink Pandas DataFrames with precision safe schema inference.

  • 1.2.4
  • PyPI
  • Socket score

Maintainers
1

Pandas Downcast

image PyPI pyversions Build Status codecov

Shrink Pandas DataFrames with precision safe schema inference. pandas-downcast finds the minimum viable type for each column, ensuring that resulting values are within tolerance of original values.

Installation

pip install pandas-downcast

Dependencies

  • python >= 3.6
  • pandas
  • numpy

License

MIT

Usage

import pdcast as pdc
import numpy as np
import pandas as pd

data = {
    "integers": np.linspace(1, 100, 100),
    "floats": np.linspace(1, 1000, 100).round(2),
    "booleans": np.random.choice([1, 0], 100),
    "categories": np.random.choice(["foo", "bar", "baz"], 100),
}

df = pd.DataFrame(data)

# Downcast DataFrame to minimum viable schema.
df_downcast = pdc.downcast(df)

# Infer minimum schema for DataFrame.
schema = pdc.infer_schema(df)

# Coerce DataFrame to schema - required if converting float to Pandas Integer.
df_new = pdc.coerce_df(df, schema)

Smaller data types $\Rightarrow$ smaller memory footprint.

df.info()
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 100 entries, 0 to 99
# Data columns (total 4 columns):
#  #   Column      Non-Null Count  Dtype  
# ---  ------      --------------  -----  
#  0   integers    100 non-null    float64
#  1   floats      100 non-null    float64
#  2   booleans    100 non-null    int64  
#  3   categories  100 non-null    object 
# dtypes: float64(2), int64(1), object(1)
# memory usage: 3.2+ KB

df_downcast.info()
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 100 entries, 0 to 99
# Data columns (total 4 columns):
#  #   Column      Non-Null Count  Dtype   
# ---  ------      --------------  -----   
#  0   integers    100 non-null    uint8   
#  1   floats      100 non-null    float32 
#  2   booleans    100 non-null    bool    
#  3   categories  100 non-null    category
# dtypes: bool(1), category(1), float32(1), uint8(1)
# memory usage: 932.0 bytes

Numerical data types will be downcast if the resulting values are within tolerance of the original values. For details on tolerance for numeric comparison, see the notes on np.allclose.

print(df.head())
#    integers  floats  booleans categories
# 0       1.0    1.00         1        foo
# 1       2.0   11.09         0        baz
# 2       3.0   21.18         1        bar
# 3       4.0   31.27         0        bar
# 4       5.0   41.36         0        foo

print(df_downcast.head())
#    integers     floats  booleans categories
# 0         1   1.000000      True        foo
# 1         2  11.090000     False        baz
# 2         3  21.180000      True        bar
# 3         4  31.270000     False        bar
# 4         5  41.360001     False        foo


print(pdc.options.ATOL)
# >>> 1e-08

print(pdc.options.RTOL)
# >>> 1e-05

Tolerance can be set at the module level or passed in function arguments.

pdc.options.ATOL = 1e-10
pdc.options.RTOL = 1e-10
df_downcast_new = pdc.downcast(df)

Or

infer_dtype_kws = {
    "ATOL": 1e-10,
    "RTOL": 1e-10
}
df_downcast_new = pdc.downcast(df, infer_dtype_kws=infer_dtype_kws)

The floats column is now kept as float64 to meet the tolerance requirement. Values in the integers column are still safely cast to uint8.

df_downcast_new.info()
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 100 entries, 0 to 99
# Data columns (total 4 columns):
#  #   Column      Non-Null Count  Dtype   
# ---  ------      --------------  -----   
#  0   integers    100 non-null    uint8   
#  1   floats      100 non-null    float64 
#  2   booleans    100 non-null    bool    
#  3   categories  100 non-null    category
# dtypes: bool(1), category(1), float64(1), uint8(1)
# memory usage: 1.3 KB

Inferred schemas can be restricted to Numpy data types only.

# Downcast DataFrame to minimum viable Numpy schema.
df_downcast = pdc.downcast(df, numpy_dtypes_only=True)

# Infer minimum Numpy schema for DataFrame.
schema = pdc.infer_schema(df, numpy_dtypes_only=True)

Example

The following example shows how downcasting data often leads to size reductions of greater than 70%, depending on the original types.

import pdcast as pdc
import pandas as pd
import seaborn as sns

df_dict = {df: sns.load_dataset(df) for df in sns.get_dataset_names()}

results = []

for name, df in df_dict.items():
    size_pre = df.memory_usage(deep=True).sum()
    df_post = pdc.downcast(df)
    size_post = df_post.memory_usage(deep=True).sum()
    shrinkage = int((1 - (size_post / size_pre)) * 100)
    results.append(
        {"dataset": name, "size_pre": size_pre, "size_post": size_post, "shrink_pct": shrinkage}
    )

results_df = pd.DataFrame(results).sort_values("shrink_pct", ascending=False).reset_index(drop=True)
print(results_df)
           dataset  size_pre  size_post  shrink_pct
0             fmri    213232      14776          93
1          titanic    321240      28162          91
2        attention      5888        696          88
3         penguins     75711       9131          87
4             dots    122240      17488          85
5           geyser     21172       3051          85
6           gammas    500128     108386          78
7         anagrams      2048        456          77
8          planets    112663      30168          73
9         anscombe      3428        964          71
10            iris     14728       5354          63
11        exercise      3302       1412          57
12         flights      3616       1888          47
13             mpg     75756      43842          42
14            tips      7969       6261          21
15        diamonds   3184588    2860948          10
16  brain_networks   4330642    4330642           0
17     car_crashes      5993       5993           0

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc