Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pandas-plink

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pandas-plink

Read PLINK files into Pandas data frames

  • 2.3.1
  • PyPI
  • Socket score

Maintainers
1

Pandas-plink is a Python package for reading PLINK binary file format andrealized relationship matrices (PLINK or GCTA). The file reading is taken place via lazy loading, meaning that it saves up memory by actually reading only the genotypes that are actually accessed by the user.

Notable changes can be found at the CHANGELOG.md.

Install

It can be installed using pip:

pip install pandas-plink

Alternatively it can be intalled via conda:

conda install -c conda-forge pandas-plink

Usage

It is as simple as

>>> from pandas_plink import read_plink1_bin
>>> G = read_plink1_bin("chr11.bed", "chr11.bim", "chr11.fam", verbose=False)
>>> print(G)
<xarray.DataArray 'genotype' (sample: 14, variant: 779)>
dask.array<shape=(14, 779), dtype=float64, chunksize=(14, 779)>
Coordinates:
  * sample   (sample) object 'B001' 'B002' 'B003' ... 'B012' 'B013' 'B014'
  * variant  (variant) object '11_316849996' '11_316874359' ... '11_345698259'
    father   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    fid      (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014'
    gender   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    i        (sample) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13
    iid      (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014'
    mother   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    trait    (sample) <U2 '-9' '-9' '-9' '-9' '-9' ... '-9' '-9' '-9' '-9' '-9'
    a0       (variant) <U1 'C' 'G' 'G' 'C' 'C' 'T' ... 'T' 'A' 'C' 'A' 'A' 'T'
    a1       (variant) <U1 'T' 'C' 'C' 'T' 'T' 'A' ... 'C' 'G' 'T' 'G' 'C' 'C'
    chrom    (variant) <U2 '11' '11' '11' '11' '11' ... '11' '11' '11' '11' '11'
    cm       (variant) float64 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0
    pos      (variant) int64 157439 181802 248969 ... 28937375 28961091 29005702
    snp      (variant) <U9 '316849996' '316874359' ... '345653648' '345698259'
>>> print(G.sel(sample="B003", variant="11_316874359").values)
0.0
>>> print(G.a0.sel(variant="11_316874359").values)
G
>>> print(G.sel(sample="B003", variant="11_316941526").values)
2.0
>>> print(G.a1.sel(variant="11_316941526").values)
C

Portions of the genotype will be read as the user access them.

Covariance matrices can also be read very easily. Example:

>>> from pandas_plink import read_rel
>>> K = read_rel("plink2.rel.bin")
>>> print(K)
<xarray.DataArray (sample_0: 10, sample_1: 10)>
array([[ 0.885782,  0.233846, -0.186339, -0.009789, -0.138897,  0.287779,
         0.269977, -0.231279, -0.095472, -0.213979],
       [ 0.233846,  1.077493, -0.452858,  0.192877, -0.186027,  0.171027,
         0.406056, -0.013149, -0.131477, -0.134314],
       [-0.186339, -0.452858,  1.183312, -0.040948, -0.146034, -0.204510,
        -0.314808, -0.042503,  0.296828, -0.011661],
       [-0.009789,  0.192877, -0.040948,  0.895360, -0.068605,  0.012023,
         0.057827, -0.192152, -0.089094,  0.174269],
       [-0.138897, -0.186027, -0.146034, -0.068605,  1.183237,  0.085104,
        -0.032974,  0.103608,  0.215769,  0.166648],
       [ 0.287779,  0.171027, -0.204510,  0.012023,  0.085104,  0.956921,
         0.065427, -0.043752, -0.091492, -0.227673],
       [ 0.269977,  0.406056, -0.314808,  0.057827, -0.032974,  0.065427,
         0.714746, -0.101254, -0.088171, -0.063964],
       [-0.231279, -0.013149, -0.042503, -0.192152,  0.103608, -0.043752,
        -0.101254,  1.423033, -0.298255, -0.074334],
       [-0.095472, -0.131477,  0.296828, -0.089094,  0.215769, -0.091492,
        -0.088171, -0.298255,  0.910274, -0.024663],
       [-0.213979, -0.134314, -0.011661,  0.174269,  0.166648, -0.227673,
        -0.063964, -0.074334, -0.024663,  0.914586]])
Coordinates:
  * sample_0  (sample_0) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
  * sample_1  (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
    fid       (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
    iid       (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
>>> print(K.values)
[[ 0.89  0.23 -0.19 -0.01 -0.14  0.29  0.27 -0.23 -0.10 -0.21]
 [ 0.23  1.08 -0.45  0.19 -0.19  0.17  0.41 -0.01 -0.13 -0.13]
 [-0.19 -0.45  1.18 -0.04 -0.15 -0.20 -0.31 -0.04  0.30 -0.01]
 [-0.01  0.19 -0.04  0.90 -0.07  0.01  0.06 -0.19 -0.09  0.17]
 [-0.14 -0.19 -0.15 -0.07  1.18  0.09 -0.03  0.10  0.22  0.17]
 [ 0.29  0.17 -0.20  0.01  0.09  0.96  0.07 -0.04 -0.09 -0.23]
 [ 0.27  0.41 -0.31  0.06 -0.03  0.07  0.71 -0.10 -0.09 -0.06]
 [-0.23 -0.01 -0.04 -0.19  0.10 -0.04 -0.10  1.42 -0.30 -0.07]
 [-0.10 -0.13  0.30 -0.09  0.22 -0.09 -0.09 -0.30  0.91 -0.02]
 [-0.21 -0.13 -0.01  0.17  0.17 -0.23 -0.06 -0.07 -0.02  0.91]]

Please, refer to the pandas-plink documentation for more information.

Authors

License

This project is licensed under the MIT License.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc