pytest-spark
############
.. image:: https://travis-ci.org/malexer/pytest-spark.svg?branch=master
:target: https://travis-ci.org/malexer/pytest-spark
pytest_ plugin to run the tests with support of pyspark (Apache Spark
_).
This plugin will allow to specify SPARK_HOME directory in pytest.ini
and thus to make "pyspark" importable in your tests which are executed
by pytest.
You can also define "spark_options" in pytest.ini
to customize pyspark,
including "spark.jars.packages" option which allows to load external
libraries (e.g. "com.databricks:spark-xml").
pytest-spark provides session scope fixtures spark_context
and
spark_session
which can be used in your tests.
Note: no need to define SPARK_HOME if you've installed pyspark using
pip (e.g. pip install pyspark
) - it should be already importable. In
this case just don't define SPARK_HOME neither in pytest
(pytest.ini / --spark_home) nor as environment variable.
Install
.. code-block:: shell
$ pip install pytest-spark
Usage
Set Spark location
To run tests with required spark_home location you need to define it by
using one of the following methods:
-
Specify command line option "--spark_home"::
$ pytest --spark_home=/opt/spark
-
Add "spark_home" value to pytest.ini
in your project directory::
[pytest]
spark_home = /opt/spark
-
Set the "SPARK_HOME" environment variable.
pytest-spark will try to import pyspark
from provided location.
.. note::
"spark_home" will be read in the specified order. i.e. you can
override pytest.ini
value by command line option.
Customize spark_options
Just define "spark_options" in your pytest.ini
, e.g.::
[pytest]
spark_home = /opt/spark
spark_options =
spark.app.name: my-pytest-spark-tests
spark.executor.instances: 1
spark.jars.packages: com.databricks:spark-xml_2.12:0.5.0
Using the spark_context
fixture
Use fixture spark_context
in your tests as a regular pyspark fixture.
SparkContext instance will be created once and reused for the whole test
session.
Example::
def test_my_case(spark_context):
test_rdd = spark_context.parallelize([1, 2, 3, 4])
# ...
Using the spark_session
fixture (Spark 2.0 and above)
Use fixture spark_session
in your tests as a regular pyspark fixture.
A SparkSession instance with Hive support enabled will be created once and reused for the whole test
session.
Example::
def test_spark_session_dataframe(spark_session):
test_df = spark_session.createDataFrame([[1,3],[2,4]], "a: int, b: int")
# ...
Overriding default parameters of the spark_session
fixture
By default spark_session
will be loaded with the following configurations :
Example::
{
'spark.app.name': 'pytest-spark',
'spark.default.parallelism': 1,
'spark.dynamicAllocation.enabled': 'false',
'spark.executor.cores': 1,
'spark.executor.instances': 1,
'spark.io.compression.codec': 'lz4',
'spark.rdd.compress': 'false',
'spark.sql.shuffle.partitions': 1,
'spark.shuffle.compress': 'false',
'spark.sql.catalogImplementation': 'hive',
}
You can override some of these parameters in your pytest.ini
.
For example, removing Hive Support for the spark session :
Example::
[pytest]
spark_home = /opt/spark
spark_options =
spark.sql.catalogImplementation: in-memory
Development
Tests
Run tests locally::
$ docker-compose up --build
.. _pytest: http://pytest.org/
.. _Apache Spark: https://spark.apache.org/