New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

quantstats-lumi

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

quantstats-lumi

Portfolio analytics for quants

  • 0.3.3
  • PyPI
  • Socket score

Maintainers
1

.. image:: https://img.shields.io/badge/python-3.6+-blue.svg?style=flat :target: https://pypi.python.org/pypi/quantstats :alt: Python version

.. image:: https://img.shields.io/pypi/v/quantstats.svg?maxAge=60 :target: https://pypi.python.org/pypi/quantstats :alt: PyPi version

.. image:: https://img.shields.io/pypi/status/quantstats.svg?maxAge=60 :target: https://pypi.python.org/pypi/quantstats :alt: PyPi status

.. image:: https://img.shields.io/pypi/dm/quantstats.svg?maxAge=2592000&label=installs&color=%2327B1FF :target: https://pypi.python.org/pypi/quantstats :alt: PyPi downloads

.. image:: https://www.codefactor.io/repository/github/ranaroussi/quantstats/badge :target: https://www.codefactor.io/repository/github/ranaroussi/quantstats :alt: CodeFactor

.. image:: https://img.shields.io/github/stars/ranaroussi/quantstats.svg?style=social&label=Star&maxAge=60 :target: https://github.com/ranaroussi/quantstats :alt: Star this repo

.. image:: https://img.shields.io/twitter/follow/aroussi.svg?style=social&label=Follow&maxAge=60 :target: https://twitter.com/aroussi :alt: Follow me on twitter

\

Fork of Original QuantStats by Ran Aroussi

This is a forked version of the original QuantStats library by Ran Aroussi. The original library can be found at https://github.com/ranaroussi/quantstats

This forked version was created because it seems that the original library is no longer being maintained. The original library has a number of issues and pull requests that have been open for a long time and have not been addressed. This forked version aims to address some of these issues and pull requests.

This forked version is created and maintained by the Lumiwealth team. We are a team of data scientists and software engineers who are passionate about quantitative finance and algorithmic trading. We use QuantStats in our daily work with the Lumibot library and we want to make sure that QuantStats is a reliable and well-maintained library.

If you're interested in learning how to make your own trading algorithms, check out our Lumibot library at https://github.com/Lumiwealth/lumibot and check out our courses at https://lumiwealth.com

QuantStats: Portfolio analytics for quants

QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to understand their performance better by providing them with in-depth analytics and risk metrics.

Changelog » <./CHANGELOG.rst>__

QuantStats is comprised of 3 main modules:


1. ``quantstats.stats`` - for calculating various performance metrics, like Sharpe ratio, Win rate, Volatility, etc.
2. ``quantstats.plots`` - for visualizing performance, drawdowns, rolling statistics, monthly returns, etc.
3. ``quantstats.reports`` - for generating metrics reports, batch plotting, and creating tear sheets that can be saved as an HTML file.

Here's an example of a simple tear sheet analyzing a strategy:

Quick Start
===========

Install QuantStats Lumi using pip:

.. code:: bash

	$ pip install quantstats-lumi

.. code:: python

    %matplotlib inline
    import quantstats_lumi as qs

    # extend pandas functionality with metrics, etc.
    qs.extend_pandas()

    # fetch the daily returns for a stock
    stock = qs.utils.download_returns('META')

    # show sharpe ratio
    qs.stats.sharpe(stock)

    # or using extend_pandas() :)
    stock.sharpe()

Output:

.. code:: text

    0.8135304438803402


Visualize stock performance
~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

    qs.plots.snapshot(stock, title='Facebook Performance', show=True)

    # can also be called via:
    # stock.plot_snapshot(title='Facebook Performance', show=True)

Output:

.. image:: https://github.com/ranaroussi/quantstats/blob/main/docs/snapshot.jpg?raw=true
    :alt: Snapshot plot


Creating a report
~~~~~~~~~~~~~~~~~

You can create 7 different report tearsheets:

1. ``qs.reports.metrics(mode='basic|full", ...)`` - shows basic/full metrics
2. ``qs.reports.plots(mode='basic|full", ...)`` - shows basic/full plots
3. ``qs.reports.basic(...)`` - shows basic metrics and plots
4. ``qs.reports.full(...)`` - shows full metrics and plots
5. ``qs.reports.html(...)`` - generates a complete report as html

Let' create an html tearsheet

.. code:: python

    (benchmark can be a pandas Series or ticker)
    qs.reports.html(stock, "SPY")

Output will generate something like this:

.. image:: https://github.com/ranaroussi/quantstats/blob/main/docs/report.jpg?raw=true
    :alt: HTML tearsheet

(`view original html file <https://rawcdn.githack.com/ranaroussi/quantstats/main/docs/tearsheet.html>`_)


To view a complete list of available methods, run

.. code:: python

[f for f in dir(qs.stats) if f[0] != '_']

.. code:: text

['avg_loss',
 'avg_return',
 'avg_win',
 'best',
 'cagr',
 'calmar',
 'common_sense_ratio',
 'comp',
 'compare',
 'compsum',
 'conditional_value_at_risk',
 'consecutive_losses',
 'consecutive_wins',
 'cpc_index',
 'cvar',
 'drawdown_details',
 'expected_return',
 'expected_shortfall',
 'exposure',
 'gain_to_pain_ratio',
 'geometric_mean',
 'ghpr',
 'greeks',
 'implied_volatility',
 'information_ratio',
 'kelly_criterion',
 'kurtosis',
 'max_drawdown',
 'monthly_returns',
 'outlier_loss_ratio',
 'outlier_win_ratio',
 'outliers',
 'payoff_ratio',
 'profit_factor',
 'profit_ratio',
 'r2',
 'r_squared',
 'rar',
 'recovery_factor',
 'remove_outliers',
 'risk_of_ruin',
 'risk_return_ratio',
 'rolling_greeks',
 'ror',
 'sharpe',
 'skew',
 'sortino',
 'adjusted_sortino',
 'tail_ratio',
 'to_drawdown_series',
 'ulcer_index',
 'ulcer_performance_index',
 'upi',
 'utils',
 'value_at_risk',
 'var',
 'volatility',
 'win_loss_ratio',
 'win_rate',
 'worst']

.. code:: python

[f for f in dir(qs.plots) if f[0] != '_']

.. code:: text

['daily_returns',
 'distribution',
 'drawdown',
 'drawdowns_periods',
 'earnings',
 'histogram',
 'log_returns',
 'monthly_heatmap',
 'returns',
 'rolling_beta',
 'rolling_sharpe',
 'rolling_sortino',
 'rolling_volatility',
 'snapshot',
 'yearly_returns']

*** Full documenttion coming soon ***

In the meantime, you can get insights as to optional parameters for each method, by using Python's help method:

.. code:: python

help(qs.stats.conditional_value_at_risk)

.. code:: text

Help on function conditional_value_at_risk in module quantstats.stats:

conditional_value_at_risk(returns, sigma=1, confidence=0.99)
    calculats the conditional daily value-at-risk (aka expected shortfall)
    quantifies the amount of tail risk an investment

Installation

Install using pip:

.. code:: bash

$ pip install quantstats --upgrade --no-cache-dir

Install using conda:

.. code:: bash

$ conda install -c ranaroussi quantstats

Requirements

  • Python <https://www.python.org>_ >= 3.5+
  • pandas <https://github.com/pydata/pandas>_ (tested to work with >=0.24.0)
  • numpy <http://www.numpy.org>_ >= 1.15.0
  • scipy <https://www.scipy.org>_ >= 1.2.0
  • matplotlib <https://matplotlib.org>_ >= 3.0.0
  • seaborn <https://seaborn.pydata.org>_ >= 0.9.0
  • tabulate <https://bitbucket.org/astanin/python-tabulate>_ >= 0.8.0
  • yfinance <https://github.com/ranaroussi/yfinance>_ >= 0.1.38
  • plotly <https://plot.ly/>_ >= 3.4.1 (optional, for using plots.to_plotly())

Questions?

This is a new library... If you find a bug, please open an issue <https://github.com/ranaroussi/quantstats/issues>_ in this repository.

If you'd like to contribute, a great place to look is the issues marked with help-wanted <https://github.com/ranaroussi/quantstats/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22>_.

Known Issues

For some reason, I couldn't find a way to tell seaborn not to return the monthly returns heatmap when instructed to save - so even if you save the plot (by passing savefig={...}) it will still show the plot.

QuantStats is distributed under the Apache Software License. See the LICENSE.txt <./LICENSE.txt>_ file in the release for details.

P.S.

Please drop me a note with any feedback you have.

Ran Aroussi

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc