Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

streamlit-chat-prompt

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

streamlit-chat-prompt

Streamlit component that allows you to create a chat prompt with paste and image attachment support

  • 0.3.1
  • PyPI
  • Socket score

Maintainers
1

Streamlit Chat Prompt

PyPI PyPI - Downloads GitHub

A Streamlit component that provides a modern chat-style prompt with image attachment and paste support. This component was built to mimic the style of streamlit.chat_input while expanding functionality with images. Future work may include addition of speech-to-text input.

Author: Tyler House (@tahouse)

Demo

Features

  • 📝 Chat-style text input with multi-line support
  • 📎 Image attachment support via button or drag-and-drop
  • 📋 Paste image support (paste images directly from clipboard)
  • 🖼️ Image preview with ability to remove attached images
  • ⌨️ Submit with Enter key (Shift+Enter for new line)
  • 🎨 Automatic theme integration with Streamlit
  • 📱 Responsive design that works well on mobile and desktop
  • 🗜️ Automatic image compression/scaling to stay under size limits (customizable, default 5MB)
  • 📌 Optional pinned-to-bottom placement for main chat interface (one per app)
  • 🔄 Flexible positioning for use in dialogs, sidebars, or anywhere in the app flow
  • ✏️ Support for default/editable content - perfect for message editing workflows
  • 🔤 Smart focus management - automatically returns to text input after interactions

Installation

pip install streamlit-chat-prompt

Usage

import streamlit as st
from streamlit_chat_prompt import prompt

# Create a chat prompt
response = prompt(
    name="chat",  # Unique name for the prompt
    key="chat",   # Unique key for the component instance
    placeholder="Hi there! What should we talk about?",  # Optional placeholder text
    main_bottom=True,  # Pin prompt to bottom of main area
    max_image_size=5 * 1024 * 1024,  # Maximum image size (5MB default)
    disabled=False,  # Optionally disable the prompt
)

# Handle the response
if response:
    if response.text:
        st.write(f"Message: {response.text}")
    
    if response.images:
        for i, img in enumerate(response.images):
            st.write(f"Image {i+1}: {img.type} ({img.format})")

Examples

Here are some usage patterns, or check out rocktalk for a full working example.

  1. Main Chat Interface Main Chat Interface

    import base64
    from io import BytesIO
    import streamlit as st
    from streamlit_chat_prompt import PromptReturn, prompt, ImageData
    from PIL import Image
    
    
    st.chat_message("assistant").write("Hi there! What should we chat about?")
    
    prompt_return: PromptReturn | None = prompt(
        name="foo",
        key="chat_prompt",
        placeholder="Hi there! What should we chat about?",
        main_bottom=True,
    )
    
    if prompt_return:
        with st.chat_message("user"):
            st.write(prompt_return.text)
            if prompt_return.images:
                for image in prompt_return.images:
                    st.divider()
                    image_data: bytes = base64.b64decode(image.data)
                    st.markdown("Using `st.image`")
                    st.image(Image.open(BytesIO(image_data)))
    
                    # or use markdown
                    st.divider()
                    st.markdown("Using `st.markdown`")
                    st.markdown(f"![Image example](data:image/png;base64,{image.data})")
    
    
  2. Dialog Usage and Starting From Existing Message Dialog Interface

    if st.button(
        "Dialog Prompt with Default Value", key=f"dialog_prompt_with_default_button"
    ):
        with open("example_images/vangogh.png", "rb") as f:
            image_data = f.read()
            image = Image.open(BytesIO(image_data))
            base64_image = base64.b64encode(image_data).decode("utf-8")
            test_dg(
                default_input=PromptReturn(
                    text="This is a test message with an image",
                    images=[
                        ImageData(data=base64_image, type="image/png", format="base64")
                    ],
                ),
                key="dialog_with_default",
            )
    

Component API

prompt()

Main function to create a chat prompt.

Parameters:

  • name (str): Unique name for this prompt instance
  • key (str): Unique key for the component instance
  • placeholder (str, optional): Placeholder text shown in input field
  • default (Union[str, PromptReturn], optional): Default value for the prompt. Can include text and images using the PromptReturn object type.
  • main_bottom (bool, optional): Pin prompt to bottom of main area (default: True)
  • max_image_size (int, optional): Maximum image size in bytes (default: 5MB)
  • disabled (bool, optional): Disable the prompt (default: False)

Returns:

Optional[PromptReturn]: Object containing message and images if submitted, None otherwise

PromptReturn

Object returned when user submits the prompt.

Properties:

  • text (Optional[str]): Text message entered by user
  • images (Optional[List[ImageData]]): List of attached images

ImageData

Object representing an attached image.

Properties:

  • type (str): Image MIME type (e.g. "image/jpeg")
  • format (str): Image format (e.g. "base64")
  • data (str): Image data as base64 string

Development

This repository is based on the Streamlit Component template system. If you want to modify or develop the component:

  1. Clone the repository

  2. Install development dependencies:

    pip install -e ".[devel]"
    
  3. Start the frontend development server:

    cd streamlit_chat_prompt/frontend
    npm install
    npm run start
    
  4. In a separate terminal, run your Streamlit app:

    streamlit run your_app.py
    

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc