New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

teapy

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

teapy

A blazingly fast datadict library

  • 0.8.2
  • PyPI
  • Socket score

Maintainers
1

Teapy

Build PyPI codecov

Blazingly fast datadict library in Python

Teapy is a high-performance data dictionary library implemented in Rust, designed for blazingly fast operations. It offers the following features:

  • Lazy evaluation
  • Handling of NaN values
  • Multi-threaded processing
  • Support for any dimensionality

Setup

Install the latest teapy version with: pip install teapy

Basic Usage

Creating Expressions

# Expressions can be created in various ways
import numpy as np
import pandas as pd
import polars as pl
import teapy as tp

e1 = tp.Expr([1, 2, 3])  # Create from list
e2 = tp.Expr((1, 2, 3))  # Create from tuple
e3 = tp.Expr(np.array([1, 2, 3]), 'e3')  # Create from numpy.ndarray, name is e3
e4 = tp.Expr(pd.Series([1, 2, 3]))  # Create from pandas.Series
e5 = tp.Expr(pl.Series([1, 2, 3]))  # Create from polars.Series

Creating DataDicts

# DataDicts can be created in different ways
dd1 = tp.DataDict({'a': [1, 2], 'b': [2, 3]}, c=[3, 4])  # Create from dictionary
dd2 = tp.DataDict([tp.Expr([1, 2], 'a'), tp.Expr([2, 3], 'b')])  # Create from list of expressions
dd3 = tp.DataDict(a=[1, 2], b=[2, 3], c=np.array([3, 6, 2]))  # Create by specifying key-value pairs

Evaluating Expressions and DataDicts

# Evaluating Expressions
e = tp.Expr([1, 2, 3]).mean()
e.eval()  # Execute the expression
e.view  # View the memory of the array
e.eview()  # Execute the expression and view the memory of the array
e.value()  # Execute the expression and copy the memory of the array to a new numpy.ndarray

# Evaluating DataDicts
dd = tp.DataDict({'a': [1, 2]*10, 'b': [2, 3]*10}, c=[3, 4])
dd = dd.select([
    dd['a'].ts_mean(3).alias('d'), 
    dd['b'].ts_std(4).alias('e')
])
dd.eval(['d', 'e'])  # Evaluate specific keys in parallel
dd.eval()  # Or evaluate all expressions in parallel
print(dd['d'])

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc