Teapy

Blazingly fast datadict library in Python
Teapy is a high-performance data dictionary library implemented in Rust, designed for blazingly fast operations. It offers the following features:
- Lazy evaluation
- Handling of NaN values
- Multi-threaded processing
- Support for any dimensionality
Setup
Install the latest teapy version with:
pip install teapy
Basic Usage
Creating Expressions
import numpy as np
import pandas as pd
import polars as pl
import teapy as tp
e1 = tp.Expr([1, 2, 3])
e2 = tp.Expr((1, 2, 3))
e3 = tp.Expr(np.array([1, 2, 3]), 'e3')
e4 = tp.Expr(pd.Series([1, 2, 3]))
e5 = tp.Expr(pl.Series([1, 2, 3]))
Creating DataDicts
dd1 = tp.DataDict({'a': [1, 2], 'b': [2, 3]}, c=[3, 4])
dd2 = tp.DataDict([tp.Expr([1, 2], 'a'), tp.Expr([2, 3], 'b')])
dd3 = tp.DataDict(a=[1, 2], b=[2, 3], c=np.array([3, 6, 2]))
Evaluating Expressions and DataDicts
e = tp.Expr([1, 2, 3]).mean()
e.eval()
e.view
e.eview()
e.value()
dd = tp.DataDict({'a': [1, 2]*10, 'b': [2, 3]*10}, c=[3, 4])
dd = dd.select([
dd['a'].ts_mean(3).alias('d'),
dd['b'].ts_std(4).alias('e')
])
dd.eval(['d', 'e'])
dd.eval()
print(dd['d'])