Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

text-generation

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

text-generation

Hugging Face Text Generation Python Client

  • 0.7.0
  • PyPI
  • Socket score

Maintainers
1

Text Generation

The Hugging Face Text Generation Python library provides a convenient way of interfacing with a text-generation-inference instance running on Hugging Face Inference Endpoints or on the Hugging Face Hub.

Get Started

Install

pip install text-generation

Inference API Usage

from text_generation import InferenceAPIClient

client = InferenceAPIClient("bigscience/bloomz")
text = client.generate("Why is the sky blue?").generated_text
print(text)
# ' Rayleigh scattering'

# Token Streaming
text = ""
for response in client.generate_stream("Why is the sky blue?"):
    if not response.token.special:
        text += response.token.text

print(text)
# ' Rayleigh scattering'

or with the asynchronous client:

from text_generation import InferenceAPIAsyncClient

client = InferenceAPIAsyncClient("bigscience/bloomz")
response = await client.generate("Why is the sky blue?")
print(response.generated_text)
# ' Rayleigh scattering'

# Token Streaming
text = ""
async for response in client.generate_stream("Why is the sky blue?"):
    if not response.token.special:
        text += response.token.text

print(text)
# ' Rayleigh scattering'

Check all currently deployed models on the Huggingface Inference API with Text Generation support:

from text_generation.inference_api import deployed_models

print(deployed_models())

Hugging Face Inference Endpoint usage

from text_generation import Client

endpoint_url = "https://YOUR_ENDPOINT.endpoints.huggingface.cloud"

client = Client(endpoint_url)
text = client.generate("Why is the sky blue?").generated_text
print(text)
# ' Rayleigh scattering'

# Token Streaming
text = ""
for response in client.generate_stream("Why is the sky blue?"):
    if not response.token.special:
        text += response.token.text

print(text)
# ' Rayleigh scattering'

or with the asynchronous client:

from text_generation import AsyncClient

endpoint_url = "https://YOUR_ENDPOINT.endpoints.huggingface.cloud"

client = AsyncClient(endpoint_url)
response = await client.generate("Why is the sky blue?")
print(response.generated_text)
# ' Rayleigh scattering'

# Token Streaming
text = ""
async for response in client.generate_stream("Why is the sky blue?"):
    if not response.token.special:
        text += response.token.text

print(text)
# ' Rayleigh scattering'

Types

# enum for grammar type
class GrammarType(Enum):
    Json = "json"
    Regex = "regex"


# Grammar type and value
class Grammar:
    # Grammar type
    type: GrammarType
    # Grammar value
    value: Union[str, dict]

class Parameters:
    # Activate logits sampling
    do_sample: bool
    # Maximum number of generated tokens
    max_new_tokens: int
    # The parameter for repetition penalty. 1.0 means no penalty.
    # See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
    repetition_penalty: Optional[float]
    # The parameter for frequency penalty. 1.0 means no penalty
    # Penalize new tokens based on their existing frequency in the text so far,
    # decreasing the model's likelihood to repeat the same line verbatim.
    frequency_penalty: Optional[float]
    # Whether to prepend the prompt to the generated text
    return_full_text: bool
    # Stop generating tokens if a member of `stop_sequences` is generated
    stop: List[str]
    # Random sampling seed
    seed: Optional[int]
    # The value used to module the logits distribution.
    temperature: Optional[float]
    # The number of highest probability vocabulary tokens to keep for top-k-filtering.
    top_k: Optional[int]
    # If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
    # higher are kept for generation.
    top_p: Optional[float]
    # truncate inputs tokens to the given size
    truncate: Optional[int]
    # Typical Decoding mass
    # See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
    typical_p: Optional[float]
    # Generate best_of sequences and return the one if the highest token logprobs
    best_of: Optional[int]
    # Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
    watermark: bool
    # Get generation details
    details: bool
    # Get decoder input token logprobs and ids
    decoder_input_details: bool
    # Return the N most likely tokens at each step
    top_n_tokens: Optional[int]
    # grammar to use for generation
    grammar: Optional[Grammar]

class Request:
    # Prompt
    inputs: str
    # Generation parameters
    parameters: Optional[Parameters]
    # Whether to stream output tokens
    stream: bool

# Decoder input tokens
class InputToken:
    # Token ID from the model tokenizer
    id: int
    # Token text
    text: str
    # Logprob
    # Optional since the logprob of the first token cannot be computed
    logprob: Optional[float]


# Generated tokens
class Token:
    # Token ID from the model tokenizer
    id: int
    # Token text
    text: str
    # Logprob
    logprob: Optional[float]
    # Is the token a special token
    # Can be used to ignore tokens when concatenating
    special: bool


# Generation finish reason
class FinishReason(Enum):
    # number of generated tokens == `max_new_tokens`
    Length = "length"
    # the model generated its end of sequence token
    EndOfSequenceToken = "eos_token"
    # the model generated a text included in `stop_sequences`
    StopSequence = "stop_sequence"


# Additional sequences when using the `best_of` parameter
class BestOfSequence:
    # Generated text
    generated_text: str
    # Generation finish reason
    finish_reason: FinishReason
    # Number of generated tokens
    generated_tokens: int
    # Sampling seed if sampling was activated
    seed: Optional[int]
    # Decoder input tokens, empty if decoder_input_details is False
    prefill: List[InputToken]
    # Generated tokens
    tokens: List[Token]
    # Most likely tokens
    top_tokens: Optional[List[List[Token]]]


# `generate` details
class Details:
    # Generation finish reason
    finish_reason: FinishReason
    # Number of generated tokens
    generated_tokens: int
    # Sampling seed if sampling was activated
    seed: Optional[int]
    # Decoder input tokens, empty if decoder_input_details is False
    prefill: List[InputToken]
    # Generated tokens
    tokens: List[Token]
    # Most likely tokens
    top_tokens: Optional[List[List[Token]]]
    # Additional sequences when using the `best_of` parameter
    best_of_sequences: Optional[List[BestOfSequence]]


# `generate` return value
class Response:
    # Generated text
    generated_text: str
    # Generation details
    details: Details


# `generate_stream` details
class StreamDetails:
    # Generation finish reason
    finish_reason: FinishReason
    # Number of generated tokens
    generated_tokens: int
    # Sampling seed if sampling was activated
    seed: Optional[int]


# `generate_stream` return value
class StreamResponse:
    # Generated token
    token: Token
    # Most likely tokens
    top_tokens: Optional[List[Token]]
    # Complete generated text
    # Only available when the generation is finished
    generated_text: Optional[str]
    # Generation details
    # Only available when the generation is finished
    details: Optional[StreamDetails]

# Inference API currently deployed model
class DeployedModel:
    model_id: str
    sha: str

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc