Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package excelize providing a set of functions that allow you to write to and read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.18 or later. See https://xuri.me/excelize for more information about this package.
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.15 or later. See https://xuri.me/excelize for more information about this package.
Package ebiten provides graphics and input API to develop a 2D game. You can start the game by calling the function RunGame. In the API document, 'the main thread' means the goroutine in init(), main() and their callees without 'go' statement. It is assured that 'the main thread' runs on the OS main thread. There are some Ebitengine functions (e.g., DeviceScaleFactor) that must be called on the main thread under some conditions (typically, before ebiten.RunGame is called). `EBITENGINE_SCREENSHOT_KEY` environment variable specifies the key to take a screenshot. For example, if you run your game with `EBITENGINE_SCREENSHOT_KEY=q`, you can take a game screen's screenshot by pressing Q key. This works only on desktops and browsers. `EBITENGINE_INTERNAL_IMAGES_KEY` environment variable specifies the key to dump all the internal images. This is valid only when the build tag 'ebitenginedebug' is specified. This works only on desktops and browsers. `EBITENGINE_GRAPHICS_LIBRARY` environment variable specifies the graphics library. If the specified graphics library is not available, RunGame returns an error. This environment variable works when RunGame is called or RunGameWithOptions is called with GraphicsLibraryAuto. This can take one of the following value: `EBITENGINE_DIRECTX` environment variable specifies various parameters for DirectX. You can specify multiple values separated by a comma. The default value is empty (i.e. no parameters). The options taking arguments are exclusive, and if multiples are specified, the lastly specified value is adopted. The possible values for the option "version" are "11" and "12". If the version is not specified, the default version 11 is adopted. On Xbox, the "version" option is ignored and DirectX 12 is always adopted. The option "featurelevel" is valid only for DirectX 12. The possible values are "11_0", "11_1", "12_0", "12_1", and "12_2". The default value is "11_0". `ebitenginedebug` outputs a log of graphics commands. This is useful to know what happens in Ebitengine. In general, the number of graphics commands affects the performance of your game. `ebitenginegldebug` enables a debug mode for OpenGL. This is valid only when the graphics library is OpenGL. This affects performance very much. `ebitenginesinglethread` disables Ebitengine's thread safety to unlock maximum performance. If you use this you will have to manage threads yourself. Functions like `SetWindowSize` will no longer be concurrent-safe with this build tag. They must be called from the main thread or the same goroutine as the given game's callback functions like Update `ebitenginesinglethread` works only with desktops and consoles. `ebitenginesinglethread` was deprecated as of v2.7. Use RunGameOptions.SingleThread instead. `microsoftgdk` is for Microsoft GDK (e.g. Xbox). `nintendosdk` is for NintendoSDK (e.g. Nintendo Switch). `nintendosdkprofile` enables a profiler for NintendoSDK. `playstation5` is for PlayStation 5.
Package lambda provides the API client, operations, and parameter types for AWS Lambda. Lambda is a compute service that lets you run code without provisioning or managing servers. Lambda runs your code on a high-availability compute infrastructure and performs all of the administration of the compute resources, including server and operating system maintenance, capacity provisioning and automatic scaling, code monitoring and logging. With Lambda, you can run code for virtually any type of application or backend service. For more information about the Lambda service, see What is Lambdain the Lambda Developer Guide. The Lambda API Reference provides information about each of the API methods, including details about the parameters in each API request and response. You can use Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools to access the API. For installation instructions, see Tools for Amazon Web Services. For a list of Region-specific endpoints that Lambda supports, see Lambda endpoints and quotas in the Amazon Web Services General Reference.. When making the API calls, you will need to authenticate your request by providing a signature. Lambda supports signature version 4. For more information, see Signature Version 4 signing processin the Amazon Web Services General Reference.. Because Amazon Web Services SDKs use the CA certificates from your computer, changes to the certificates on the Amazon Web Services servers can cause connection failures when you attempt to use an SDK. You can prevent these failures by keeping your computer's CA certificates and operating system up-to-date. If you encounter this issue in a corporate environment and do not manage your own computer, you might need to ask an administrator to assist with the update process. The following list shows minimum operating system and Java versions: Microsoft Windows versions that have updates from January 2005 or later installed contain at least one of the required CAs in their trust list. Mac OS X 10.4 with Java for Mac OS X 10.4 Release 5 (February 2007), Mac OS X 10.5 (October 2007), and later versions contain at least one of the required CAs in their trust list. Red Hat Enterprise Linux 5 (March 2007), 6, and 7 and CentOS 5, 6, and 7 all contain at least one of the required CAs in their default trusted CA list. Java 1.4.2_12 (May 2006), 5 Update 2 (March 2005), and all later versions, including Java 6 (December 2006), 7, and 8, contain at least one of the required CAs in their default trusted CA list. When accessing the Lambda management console or Lambda API endpoints, whether through browsers or programmatically, you will need to ensure your client machines support any of the following CAs: Amazon Root CA 1 Starfield Services Root Certificate Authority - G2 Starfield Class 2 Certification Authority Root certificates from the first two authorities are available from Amazon trust services, but keeping your computer up-to-date is the more straightforward solution. To learn more about ACM-provided certificates, see Amazon Web Services Certificate Manager FAQs.
Package rds provides the API client, operations, and parameter types for Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, Db2, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.
Package workspaces provides the API client, operations, and parameter types for Amazon WorkSpaces. Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows or Amazon Linux desktops for your users, known as WorkSpaces. WorkSpaces eliminates the need to procure and deploy hardware or install complex software. You can quickly add or remove users as your needs change. Users can access their virtual desktops from multiple devices or web browsers. This API Reference provides detailed information about the actions, data types, parameters, and errors of the WorkSpaces service. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas of the Amazon WorkSpaces service, see WorkSpaces endpoints and quotasin the Amazon Web Services General Reference. You can also manage your WorkSpaces resources using the WorkSpaces console, Command Line Interface (CLI), and SDKs. For more information about administering WorkSpaces, see the Amazon WorkSpaces Administration Guide. For more information about using the Amazon WorkSpaces client application or web browser to access provisioned WorkSpaces, see the Amazon WorkSpaces User Guide. For more information about using the CLI to manage your WorkSpaces resources, see the WorkSpaces section of the CLI Reference.
Package databasemigrationservice provides the API client, operations, and parameter types for AWS Database Migration Service. Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.
Package directoryservice provides the API client, operations, and parameter types for AWS Directory Service. Directory Service is a web service that makes it easy for you to setup and run directories in the Amazon Web Services cloud, or connect your Amazon Web Services resources with an existing self-managed Microsoft Active Directory. This guide provides detailed information about Directory Service operations, data types, parameters, and errors. For information about Directory Services features, see Directory Serviceand the Directory Service Administration Guide. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, iOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to Directory Service and other Amazon Web Services services. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services.
Package workmail provides the API client, operations, and parameter types for Amazon WorkMail. WorkMail is a secure, managed business email and calendaring service with support for existing desktop and mobile email clients. You can access your email, contacts, and calendars using Microsoft Outlook, your browser, or other native iOS and Android email applications. You can integrate WorkMail with your existing corporate directory and control both the keys that encrypt your data and the location in which your data is stored. The WorkMail API is designed for the following scenarios: Listing and describing organizations Managing users Managing groups Managing resources All WorkMail API operations are Amazon-authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of AWS Identity and Access Management users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the WorkMail site, the IAM user gains full administrative visibility into the entire WorkMail organization (or as set in the IAM policy). This includes, but is not limited to, the ability to create, update, and delete users, groups, and resources. This allows developers to perform the scenarios listed above, as well as give users the ability to grant access on a selective basis using the IAM model.
Package d3d9 provides a wrapper for Microsoft's Direct3D9 API in pure Go. It can only be used on Windows. When running a Direct3D application you need to have d3d9.dll installed on the system, which fortunately has been deployed with all Windows versions since XP. This means if you have Go installed, you also have the DLL installed. This also means that your application can be deployed without the DirectX DLLs and if you have no other dependencies you can just give the executable file to the users. To get going with this wrapper there are some basic samples that demonstrate how to set up and use the library at: https://github.com/gonutz/d3d9/tree/master/samples
Package api is the root of the packages used to access Microsoft OneDrive. Within api there exist also testing utilities. Note that versioning and stability is strictly not communicated through Go modules. Go modules are used only for dependency management. As a user, you should always locally vendor any API(s) that your code relies upon in this module.
Package msgraph is a go lang implementation of the Microsoft Graph API See: https://developer.microsoft.com/en-us/graph/docs/concepts/overview
Package tpm2 implements an API for communicating with TPM 2.0 devices. This documentation refers to TPM commands and types that are described in more detail in the TPM 2.0 Library Specification. Knowledge of this specification is assumed in this documentation. Communication with Linux TPM character devices and TPM simulators implementing the Microsoft TPM2 simulator interface is supported. The core type by which consumers of this package communicate with a TPM is TPMContext.
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package applicationinsights provides the API client, operations, and parameter types for Amazon CloudWatch Application Insights. Amazon CloudWatch Application Insights is a service that helps you detect common problems with your applications. It enables you to pinpoint the source of issues in your applications (built with technologies such as Microsoft IIS, .NET, and Microsoft SQL Server), by providing key insights into detected problems. After you onboard your application, CloudWatch Application Insights identifies, recommends, and sets up metrics and logs. It continuously analyzes and correlates your metrics and logs for unusual behavior to surface actionable problems with your application. For example, if your application is slow and unresponsive and leading to HTTP 500 errors in your Application Load Balancer (ALB), Application Insights informs you that a memory pressure problem with your SQL Server database is occurring. It bases this analysis on impactful metrics and log errors.
Package workspaces provides the client and types for making API requests to Amazon WorkSpaces. Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows desktops for your users. See https://docs.aws.amazon.com/goto/WebAPI/workspaces-2015-04-08 for more information on this service. See workspaces package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/workspaces/ To Amazon WorkSpaces with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon WorkSpaces client WorkSpaces for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/workspaces/#New
Package wmi provides a WMI Query Language (WQL) interface for Windows Management Instrumentation (WMI) on Windows. This package uses COM API for WMI therefore it's only usable on the Windows machines. This package has many .Query calls, the main rule of thumb for choosing the right one is "prefer SWbemServicesConnection if you bother about performance and just do wmi.Query if not". More detailed benchmarks are available in the repo: https://github.com/bi-zone/wmi#benchmarks More reference about WMI is available in Microsoft Docs: https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-reference)
Package launchwizard provides the API client, operations, and parameter types for AWS Launch Wizard. Launch Wizard offers a guided way of sizing, configuring, and deploying Amazon Web Services resources for third party applications, such as Microsoft SQL Server Always On and HANA based SAP systems, without the need to manually identify and provision individual Amazon Web Services resources.
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package rds provides the client and types for making API requests to Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Note that Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html). For the alphabetical list of data types, see Data Types (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html). For a list of common query parameters, see Common Parameters (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html). For descriptions of the error codes, see Common Errors (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html). Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Interfaces). For more information about how to use the Query API, see Using the Query API (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_the_Query_API.html). See https://docs.aws.amazon.com/goto/WebAPI/rds-2014-10-31 for more information on this service. See rds package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/ To Amazon Relational Database Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Relational Database Service client RDS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#New The rdsutil package's BuildAuthToken function provides a connection authentication token builder. Given an endpoint of the RDS database, AWS region, DB user, and AWS credentials the function will create an presigned URL to use as the authentication token for the database's connection. The following example shows how to use BuildAuthToken to create an authentication token for connecting to a MySQL database in RDS. See rdsutil package for more information. http://docs.aws.amazon.com/sdk-for-go/api/service/rds/rdsutils/
Package excelize providing a set of functions that allow you to write to and read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.18 or later. See https://xuri.me/excelize for more information about this package.
Package excelize providing a set of functions that allow you to write to and read from XLSX / XLSM / XLTM files. Supports reading and writing spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.10 or later. See https://xuri.me/excelize for more information about this package.
Package directoryservicedata provides the API client, operations, and parameter types for AWS Directory Service Data. Service. This API reference provides detailed information about Directory Service Data operations and object types. With Directory Service Data, you can create, read, update, and delete users, groups, and memberships from your Managed Microsoft AD without additional costs and without deploying dedicated management instances. You can also perform built-in object management tasks across directories without direct network connectivity, which simplifies provisioning and access management to achieve fully automated deployments. Directory Service Data supports user and group write operations, such as CreateUser and CreateGroup , within the organizational unit (OU) of your Managed Microsoft AD. Directory Service Data supports read operations, such as ListUsers and ListGroups , on all users, groups, and group memberships within your Managed Microsoft AD and across trusted realms. Directory Service Data supports adding and removing group members in your OU and the Amazon Web Services Delegated Groups OU, so you can grant and deny access to specific roles and permissions. For more information, see Manage users and groupsin the Directory Service Administration Guide. Directory management operations and configuration changes made against the Directory Service API will also reflect in Directory Service Data API with eventual consistency. You can expect a short delay between management changes, such as adding a new directory trust and calling the Directory Service Data API for the newly created trusted realm. Directory Service Data connects to your Managed Microsoft AD domain controllers and performs operations on underlying directory objects. When you create your Managed Microsoft AD, you choose subnets for domain controllers that Directory Service creates on your behalf. If a domain controller is unavailable, Directory Service Data uses an available domain controller. As a result, you might notice eventual consistency while objects replicate from one domain controller to another domain controller. For more information, see What gets createdin the Directory Service Administration Guide. Directory limits vary by Managed Microsoft AD edition: Standard edition – Supports 8 transactions per second (TPS) for read operations and 4 TPS for write operations per directory. There's a concurrency limit of 10 concurrent requests. Enterprise edition – Supports 16 transactions per second (TPS) for read operations and 8 TPS for write operations per directory. There's a concurrency limit of 10 concurrent requests. Amazon Web Services Account - Supports a total of 100 TPS for Directory Service Data operations across all directories. Directory Service Data only supports the Managed Microsoft AD directory type and is only available in the primary Amazon Web Services Region. For more information, see Managed Microsoft ADand Primary vs additional Regions in the Directory Service Administration Guide.
Package rds provides the client and types for making API requests to Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Note that Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html). For the alphabetical list of data types, see Data Types (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html). For a list of common query parameters, see Common Parameters (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html). For descriptions of the error codes, see Common Errors (http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html). Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html#Welcome.Interfaces). For more information about how to use the Query API, see Using the Query API (http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using_the_Query_API.html). See https://docs.aws.amazon.com/goto/WebAPI/rds-2014-10-31 for more information on this service. See rds package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/ To Amazon Relational Database Service with the SDK use the New function to create a new service client. With that client you can make API requests to the service. These clients are safe to use concurrently. See the SDK's documentation for more information on how to use the SDK. https://docs.aws.amazon.com/sdk-for-go/api/ See aws.Config documentation for more information on configuring SDK clients. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config See the Amazon Relational Database Service client RDS for more information on creating client for this service. https://docs.aws.amazon.com/sdk-for-go/api/service/rds/#New The rdsutil package's BuildAuthToken function provides a connection authentication token builder. Given an endpoint of the RDS database, AWS region, DB user, and AWS credentials the function will create an presigned URL to use as the authentication token for the database's connection. The following example shows how to use BuildAuthToken to create an authentication token for connecting to a MySQL database in RDS. See rdsutil package for more information. http://docs.aws.amazon.com/sdk-for-go/api/service/rds/rdsutils/
Package excelize providing a set of functions that allow you to write to and read from XLAM / XLSM / XLSX / XLTM / XLTX files. Supports reading and writing spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports complex components by high compatibility, and provided streaming API for generating or reading data from a worksheet with huge amounts of data. This library needs Go version 1.18 or later. See https://xuri.me/excelize for more information about this package.
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document: