Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

crabnet

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

crabnet

Predict materials properties using only the composition information.

  • 2.0.8
  • PyPI
  • Socket score

Maintainers
1

Compositionally-Restricted Attention-Based Network (CrabNet)

The Compositionally-Restricted Attention-Based Network (CrabNet), inspired by natural language processing transformers, uses compositional information to predict material properties.

<img src=https://user-images.githubusercontent.com/45469701/155030619-3a5f75e8-b28d-4801-a54c-58a800ee874c.png width=150>

DOI

Open In Colab
(PyPI) Read the Docs GitHub Workflow
Status

PyPI Code style:
black Lines of code GitHub

Conda Conda Conda Anaconda-Server Badge

:warning: This is a fork of the original CrabNet repository :warning:

This is a refactored version of CrabNet, published to PyPI (pip) and Anaconda (conda). In addition to using .csv files, it allows direct passing of Pandas DataFrames as training and validation datasets, similar to automatminer. It also exposes many of the model parameters at the top-level via CrabNet and uses the sklearn-like "instantiate, fit, predict" workflow. An extend_features is implemented which allows utilization of data other than the elemental compositions (e.g. state variables such as temperature or applied load). These changes make CrabNet portable, extensible, and more broadly applicable, and will be incorporated into the parent repository at a later date. Please refer to the CrabNet documentation for details on installation and usage. If you find CrabNet useful, please consider citing the following publication in npj Computational Materials:

Citing

@article{Wang2021crabnet,
 author = {Wang, Anthony Yu-Tung and Kauwe, Steven K. and Murdock, Ryan J. and Sparks, Taylor D.},
 year = {2021},
 title = {Compositionally restricted attention-based network for materials property predictions},
 pages = {77},
 volume = {7},
 number = {1},
 doi = {10.1038/s41524-021-00545-1},
 publisher = {{Nature Publishing Group}},
 shortjournal = {npj Comput. Mater.},
 journal = {npj Computational Materials}
}

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc