New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

datarecipe

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

datarecipe

A recipe for every data baker

  • 2.1.0
  • PyPI
  • Socket score

Maintainers
1

DataRecipe

Table of Contents

  1. Overview
  2. Functions
  3. Contact Information

Overview

This toolkit provides a variety of Python functions to facilitate common data manipulation, data import/export, and database operations.

Functions

General Features

send_email

Sends an email using SMTP with SSL/TLS options, supporting attachments if provided.

  • Parameters:
    • subject: Email subject as a string.
    • body: Main content of the email.
    • send_email_address: Sender's email address.
    • send_email_password: Sender's email password for SMTP authentication.
    • receive_email_address: Recipient's email address.
    • attachment_path: Directory path where attachments are stored (optional).
    • attachment_list: List of filenames to be attached (optional).
    • smtp_address: SMTP server address (default: 'smtp.feishu.cn').
    • smtp_port: SMTP server port (default: 465).

Example with Attachments:

send_email(
    "Meeting Documents", 
    "Please see attached documents for the upcoming meeting.", 
    "sender@example.com", 
    "password123", 
    "receiver@example.com", 
    attachment_path="/path/to/documents", 
    attachment_list=["agenda.pdf", "minutes.docx"]
)

Data Validation and Cleaning

check_empty

Checks for empty entries in specified DataFrame columns.

  • Parameters:
    • df: DataFrame to check.
    • columns: Columns to check for missing values.
    • output_cols: Columns to include in the output.

Example:

empty_data = check_empty(df, columns=["name", "email"])
clean_dataframe

Cleans DataFrame by replacing infinite values with NaN.

  • Parameters:
    • df: DataFrame to clean.

Example:

clean_dataframe(df)

Data Import/Export

local_to_df

Converts files from a local directory to a pandas DataFrame.

  • Parameters:
    • path: Directory path to search for files.
    • partial_file_name: File name pattern to match.
    • skip_rows: Number of rows to skip at the start of each file.
    • keep_file_name: If True, adds a column with the file name.
    • sheet_num: For Excel files, specifies the sheet number to read.
    • encoding: Character encoding of the files.

Example with CSV files:

df = local_to_df("./data", "sample", keep_file_name=True)

Example with Excel files:

df = local_to_df("./data", "report", sheet_num=2, encoding='utf-8')
df_to_xlsx

Saves a DataFrame to an Excel file.

  • Parameters:
    • df: DataFrame to save.
    • directory_path: Path to directory where the file will be saved.
    • file_name: Name of the output file.

Example:

df_to_xlsx(df, "./output", "output_data")
df_to_csv

Saves a DataFrame to a CSV file.

  • Parameters:
    • df: DataFrame to save.
    • directory_path: Path to directory where the file will be saved.
    • file_name: Name of the output file.

Example:

df_to_csv(df, "./output", "output_data")

Database Operations

update

Updates records in a database table based on conditions.

  • Parameters:
    • raw_df: DataFrame containing new data to update.
    • database: Database name.
    • table: Table name.
    • yaml_file_name: YAML file name with DB configuration.
    • clause: SQL clause for record deletion.
    • date_col: Column name containing date data.
    • custom_path: Path to directory containing the YAML file.

Example:

update(df, "test_db", "user_data", clause="user_id > 10")
sql_query

Executes a SELECT SQL query and returns a DataFrame.

  • Parameters:
    • database: Database name.
    • sql: SQL SELECT statement.
    • yaml_file_name: YAML file name with DB configuration.
    • custom_path: Optional path to directory containing the YAML file.

Example:

result_df = sql_query("test_db", "SELECT * FROM users")

Contact Information

For any questions or suggestions regarding the toolkit, please contact us at:

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc