Easy text and chat completion, as well as function calling. Also includes useful utilities for counting tokens, composing prompts and trimming them to fit within the token limit.
Installation
pip install easycompletion
Quickstart
from easycompletion import function_completion, text_completion, compose_prompt
test_function = compose_function(
name="write_song",
description="Write a song about AI",
properties={
"lyrics": {
"type": "string",
"description": "The lyrics for the song",
}
},
required_properties: ["lyrics"],
)
response = function_completion(text="Write a song about AI", functions=[test_function], function_call="write_song")
print(response["arguments"]["lyrics"])
Using With Llama v2 and Local Models
easycompletion has been tested with LocalAI LocalAI which replicates the OpenAI API with local models, including Llama v2.
Follow instructions for setting up LocalAI and then set the following environment variable:
export EASYCOMPLETION_API_ENDPOINT=localhost:8000
Basic Usage
Compose Prompt
You can compose a prompt using {{handlebars}} syntax
test_prompt = "Don't forget your {{object}}"
test_dict = {"object": "towel"}
prompt = compose_prompt(test_prompt, test_dict)
Text Completion
Send text, get a response as a text string
from easycompletion import text_completion
response = text_completion("Hello, how are you?")
Compose a Function
Compose a function to pass into the function calling API
from easycompletion import compose_function
test_function = compose_function(
name="write_song",
description="Write a song about AI",
properties={
"lyrics": {
"type": "string",
"description": "The lyrics for the song",
}
},
required_properties: ["lyrics"],
)
Function Completion
Send text and a list of functions and get a response as a function call
from easycompletion import function_completion, compose_function
response = function_completion(text="Write a song about AI", functions=[test_function], function_call="write_song")
print(response["arguments"]["lyrics"])
Advanced Usage
compose_function(name, description, properties, required_properties)
Composes a function object for function completions.
summarization_function = compose_function(
name="summarize_text",
description="Summarize the text. Include the topic, subtopics.",
properties={
"summary": {
"type": "string",
"description": "Detailed summary of the text.",
},
},
required_properties=["summary"],
)
chat_completion(text, model_failure_retries=5, model=None, chunk_length=DEFAULT_CHUNK_LENGTH, api_key=None)
Send a list of messages as a chat and returns a text response.
response = chat_completion(
messages = [{ "user": "Hello, how are you?"}],
system_message = "You are a towel. Respond as a towel.",
model_failure_retries=3,
model='gpt-3.5-turbo',
chunk_length=1024,
api_key='your_openai_api_key'
)
The response object looks like this:
{
"text": "string",
"usage": {
"prompt_tokens": "number",
"completion_tokens": "number",
"total_tokens": "number"
},
"error": "string|None",
"finish_reason": "string"
}
text_completion(text, model_failure_retries=5, model=None, chunk_length=DEFAULT_CHUNK_LENGTH, api_key=None)
Sends text to the model and returns a text response.
response = text_completion(
"Hello, how are you?",
model_failure_retries=3,
model='gpt-3.5-turbo',
chunk_length=1024,
api_key='your_openai_api_key'
)
The response object looks like this:
{
"text": "string",
"usage": {
"prompt_tokens": "number",
"completion_tokens": "number",
"total_tokens": "number"
},
"error": "string|None",
"finish_reason": "string"
}
function_completion(text, functions=None, system_message=None, messages=None, model_failure_retries=5, function_call=None, function_failure_retries=10, chunk_length=DEFAULT_CHUNK_LENGTH, model=None, api_key=None)
Sends text and a list of functions to the model and returns optional text and a function call. The function call is validated against the functions array.
Optionally takes a system message and a list of messages to send to the model before the function call. If messages are provided, the "text" becomes the last user message in the list.
function = {
'name': 'function1',
'parameters': {'param1': 'value1'}
}
response = function_completion("Call the function.", function)
The response object looks like this:
{
"text": "string",
"function_name": "string",
"arguments": "dict",
"usage": {
"prompt_tokens": "number",
"completion_tokens": "number",
"total_tokens": "number"
},
"finish_reason": "string",
"error": "string|None"
}
trim_prompt(text, max_tokens=DEFAULT_CHUNK_LENGTH, model=TEXT_MODEL, preserve_top=True)
Trim the given text to a maximum number of tokens.
trimmed_text = trim_prompt("This is a test.", 3, preserve_top=True)
chunk_prompt(prompt, chunk_length=DEFAULT_CHUNK_LENGTH)
Split the given prompt into chunks where each chunk has a maximum number of tokens.
prompt_chunks = chunk_prompt("This is a test. I am writing a function.", 4)
count_tokens(prompt, model=TEXT_MODEL)
Count the number of tokens in a string.
num_tokens = count_tokens("This is a test.")
get_tokens(prompt, model=TEXT_MODEL)
Returns a list of tokens in a string.
tokens = get_tokens("This is a test.")
compose_prompt(prompt_template, parameters)
Composes a prompt using a template and parameters. Parameter keys are enclosed in double curly brackets and replaced with parameter values.
prompt = compose_prompt("Hello {{name}}!", {"name": "John"})
A note about models
You can pass in a model using the model
parameter of either function_completion or text_completion. If you do not pass in a model, the default model will be used. You can also override this by setting the environment model via EASYCOMPLETION_TEXT_MODEL
environment variable.
Default model is gpt-turbo-3.5-0613.
A note about API keys
You can pass in an API key using the api_key
parameter of either function_completion or text_completion. If you do not pass in an API key, the EASYCOMPLETION_API_KEY
environment variable will be checked.
Publishing
bash publish.sh --version=<version> --username=<pypi_username> --password=<pypi_password>
Contributions Welcome
If you like this library and want to contribute in any way, please feel free to submit a PR and I will review it. Please note that the goal here is simplicity and accesibility, using common language and few dependencies.
If you have any questions, please feel free to reach out to me on Twitter or Discord @new.moon