New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

ecmwf-opendata

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ecmwf-opendata

A package to download ECMWF open data

  • 0.3.19
  • PyPI
  • Socket score

Maintainers
2

ecmwf-opendata

ecmwf-opendata is a package to simplify the download of ECMWF open data. It implements a request-based interface to the dataset using ECMWF's MARS language to select meteorological fields, similar to the existing ecmwf-api-client Python package.

A collection of Jupyter Notebooks that make use of that package is available here.

Installation

The ecmwf-opendata Python package can be installed from PyPI with:

$ pip install ecmwf-opendata

Usage

The example below will download the latest available 10-day forecast for the mean sea level pressure (msl) into a local file called data.grib2:

from ecmwf.opendata import Client

client = Client()

client.retrieve(
    step=240,
    type="fc",
    param="msl",
    target="data.grib2",
)

NOTE: This package is designed for users that want to download a subset of the whole dataset. If you plan to download a large percentage of each data file, it may be more efficient to download whole files and filter out the data you want locally. See the documentation on the file naming convention for more information. Alternatively, you can use this tool to download whole files by only specifying date, time, step, stream and type. Please be aware that all data for a full day is in the order of 726 GiB.

Options

The constructor of the client object takes the following options:

client = Client(
    source="ecmwf",
    model="ifs",
    resol="0p25",
    preserve_request_order=False,
    infer_stream_keyword=True,
)

where:

  • source is either the name of server to contact or a fully qualified URL. Possible values are ecmwf to access ECMWF's servers, or azure to access data hosted on Microsoft's Azure. Default is ecmwf.

  • model is the name of the model that produced the data. Use ifs for the physics-driven model and aifs-single for the data-driven model. Default is ifs.

  • resol specifies the resolution of the data. Default is 0p25 for 0.25 degree resolution, and is the only resolution that is currently available.

  • preserve_request_order. If this flag is set to True, the library will attempt to write the retrieved data into the target file in the order specified by the request. For example, if the request specifies param=[2t,msl] the library will ensure that the field 2t is first in the target file, while with param=[msl,2t], the field msl will be first. This also works across different keywords: ...,levelist=[500,100],param=[z,t],... will produce different output to ...,param=[z,t],levelist=[500,100],... If the flag is set to False, the library will sort the request to minimise the number of HTTP requests made to the server, leading to faster download speeds. Default is False.

  • infer_stream_keyword. The stream keyword represents the ECMWF forecasting system that creates the data. Setting it properly requires knowledge of how ECMWF runs its operations. If this boolean is set to True, the library will try to infer the correct value for the stream keyword based on the rest of the request. Default is True if model is ifs.

⚠️ NOTE: It is recommended not to set the preserve_request_order flag to True when downloading a large number of fields as this will add extra load on the servers.

Methods

Client.retrieve()

The Client.retrieve() method takes request as input and will retrieve the corresponding data from the server and write them in the user's target file.

A request is a list of keyword/value pairs used to select the desired data. It is possible to specify a list of values for a given keyword.

The request can either be specified as a dictionary:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

request = {
    "time": 0,
    "type": "fc",
    "step": 24,
    "param": ["2t", "msl"],
}

client.retrieve(request, "data.grib2")

# or:

client.retrieve(
    request=request,
    target="data.grib2",
)

or directly as arguments to the retrieve() method:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    type="fc",
    step=24,
    param=["2t", "msl"],
    target="data.grib2",
)

The date and time keyword are used to select the date and time of the forecast run (see Date and time below). If date or both date and time are not specified, the library will query the server for the most recent matching data. The date and time of the downloaded forecast is returned by the retrieve() method.

from ecmwf.opendata import Client

client = Client(source="ecmwf")

result = client.retrieve(
    type="fc",
    step=24,
    param=["2t", "msl"],
    target="data.grib2",
)

print(result.datetime)

may print 2022-01-23 00:00:00.

Client.download()

The Client.download() method takes the same parameters as the Client.retrieve() method, but will download the whole data files from the server, ignoring keywords like param, levelist or number.

The example below will download all field from the latest time step 24, ignoring the keyword param:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.download(
    param="msl",
    type="fc",
    step=24,
    target="data.grib2",
)

Client.latest()

The Client.latest() method takes the same parameters as the Client.retrieve() method, and returns the date of the most recent matching forecast without downloading the data:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

print(client.latest(
    type="fc",
    step=24,
    param=["2t", "msl"],
    target="data.grib2",
))

may print 2022-01-23 00:00:00.

NOTE: The data is available between 7 and 9 hours after the forecast starting date and time, depending on the forecasting system and the time step specified.

Request keywords

The supported keywords are:

  • type: the type of data (compulsory, defaults to fc).
  • stream: the forecast system (optional if unambiguous, compulsory otherwise). See the infer_stream_keyword above.
  • date: the date at which the forecast starts.
  • time: the time at which the forecast starts.
  • step: the forecast time step in hours, or fcmonth, the time step in months for the seasonal forecast (compulsory, default to 0 and 1, respectively).

and (all optional, with no defaults):

  • param: the meteorological parameters, such as wind, pressure or humidity.
  • levtype: select between single level parameters and parameters on pressure levels.
  • levelist: the list of pressure levels when relevant.
  • number: the list of ensemble member numbers when relevant.

The keywords in the first list are used to identify which file to access, while the second list is used to identify which parts of the files need to be actually downloaded. Some HTTP servers are able to return multiple parts of a file, while other can only return a single part from a file. In the latter case, the library may perform many HTTP requests to the server. If you wish to download whole files, only provide keywords from the first list.

Date and time

The date and time parameters refer to the starting time of the forecast. All date and time are expressed in UTC.

There are several ways to specify the date and time in a request.

Date can be specified using strings, numbers and Python datetime.datetime or datetime.date objects:

...
    date='20220125',
    time=12,
...
    date='2022-01-25',
    time=12,
...
    date='2022-01-25 12:00:00',
...
    date=20220125,
    time=12,
...
    date=datetime.datetime(2022, 1, 25, 12, 0, 0),
...
    date=datetime.date(2022, 1, 25),
    time=12,
...

Dates can also be given as a number less than or equal to zero. In this case, it is equivalent to the current UTC date minus the given number of days:

...
    date=0, # today
    date=-1, # yesterday
    date=-2, # the day before yesterday
...

The keyword time can be given as a string or an integer, or a Python datetime.time object. All values of time below are equivalent:

...
    time=12,
...
    time=1200,
...
    time='12',
...
    time='1200',
...
    time=datetime.time(12),
...
List of valid values for time
0, 6, 12 and 18

If time is not specified, the time is extracted from the date.

...
   date='2022-01-25 12:00:00',
...

is equivalent to:

...
   date='2022-01-25',
   time=12,
...

If the time keyword is specified, it overrides any time given in the request.

...
   date='2022-01-25 12:00:00',
   time=18,
...

is equivalent to:

...
   date='2022-01-25',
   time=18,
...

As stated before, if date or both date and time are not specified, the library will query the server for the most recent matching data. The date and time of the downloaded forecast is returned by the retrieve() method:

Example without the date keyword:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

result = client.retrieve(
    time=12,
    type="fc",
    param="2t",
    step="24",
    target="data.grib2",
)

print(result.datetime)

will print 2022-01-22 12:00:00 if run in the morning of 2022-01-23.

Example without the date and time keywords:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

result = client.retrieve(
    type="fc",
    param="2t",
    step="24",
    target="data.grib2",
)

print(result.datetime)

will print 2022-01-23 00:00:00 if run in the morning of 2022-01-23.

Stream and type

ECMWF runs several forecasting systems:

  • HRES: High Resolution Forecast.
  • ENS: Ensemble Forecasts.
  • SEAS: Long-Range (Seasonal) Forecast.

Each of these forecasts also produces several types of products, that are referred to using the keywords stream and type.

Valid values for type are:

HRES:

  • fc: Forecast.

ENS:

  • cf: Control forecast.
  • pf: Perturbed forecast.
  • em: Ensemble mean.
  • es: Ensemble standard deviation.
  • ep: Probabilities.

Valid values for stream are:

  • oper: Atmospheric fields from HRES - 00 UTC and 12 UTC.
  • wave: Ocean wave fields from HRES - 00 UTC and 12 UTC.
  • enfo: Atmospheric fields from ENS.
  • waef: Ocean wave fields from ENS.
  • scda: Atmospheric fields from HRES - 06 UTC and 18 UTC.
  • scwv: Ocean wave fields from HRES - 06 UTC and 18 UTC.

📌 NOTE: if the client's flag infer_stream_keyword is set to True, the library will infer the stream from the type and time. In that case, you just need to specify stream=wave to access ocean wave products, and don't provide a value for stream in other cases.

Time steps

To select a time step, use the step keyword:

...
   step=24,
...
   step=[24, 48],
...
Forecasting systemTimeList of time steps
HRES00 and 120 to 144 by 3, 144 to 240 by 6
ENS00 and 120 to 144 by 3, 144 to 360 by 6
HRES06 and 180 to 90 by 3
ENS06 and 180 to 144 by 3
Probabilities - Instantaneous weather events00 and 120 to 360 by 12
Probabilities - Daily weather events00 and 120-24 to 336-360 by 12

📌 NOTE: Not specifying step will return all available time steps.

Parameters and levels

To select a parameter, use the param keyword:

...
   param="msl",
...
   param=["2t", "msl"]
...

for pressure level parameters, use the levelist keyword:

...
   param="t",
   levelist=850,
...
   param=["u", "v"],
   levelist=[1000, 850, 500],
...

📌 NOTE: Not specifying levelist will return all available levels, and not specifying param will return all available parameters.

List of pressure levels (hPa)
1000, 925, 850, 700, 500, 300, 250, 200 and 50

Below is the list of all parameters:

Atmospheric fields on pressure levels

ParameterDescriptionUnits
dDivergences-1
ghGeopotential heightgpm
qSpecific humiditykg kg-1
rRelative humidity%
tTemperatureK
uU component of windm s-1
vV component of windm s-1
voVorticity (relative)s-1

Atmospheric fields on a single level

ParameterDescriptionUnits
10u10 metre U wind componentm s-1
10v10 metre V wind componentm s-1
2t2 metre temperatureK
mslMean sea level pressurePa
roRunoffm
sktSkin temperatureK
spSurface pressurePa
stSoil TemperatureK
stl1Soil temperature level 1K
tcwvTotal column vertically-integrated water vapourkg m-2
tpTotal Precipitationm

Ocean waves fields

ParameterDescriptionUnits
mp2Mean zero-crossing wave periods
mwdMean wave directionDegree true
mwpMean wave periods
pp1dPeak wave periods
swhSignificant height of combined wind waves and swellm

Ensemble mean and standard deviation - pressure levels

ParameterDescriptionUnitsLevels
ghGeopotential heightgpm300, 500, 1000
tTemperatureK250, 500, 850
wsWind speedm s-1250, 850

Ensemble mean and standard deviation - single level

ParameterDescriptionUnits
mslMean sea level pressurePa

Instantaneous weather events - atmospheric fields - 850 hPa

ParameterDescriptionUnits
ptsa_gt_1p5stdevProbability of temperature standardized anomaly greater than 1.5 standard deviation%
ptsa_gt_1stdevProbability of temperature standardized anomaly greater than 1 standard deviation%
ptsa_gt_2stdevProbability of temperature standardized anomaly greater than 2 standard deviation%
ptsa_lt_1p5stdevProbability of temperature standardized anomaly less than -1.5 standard deviation%
ptsa_lt_1stdevProbability of temperature standardized anomaly less than -1 standard deviation%
ptsa_lt_2stdevProbability of temperature standardized anomaly less than -2 standard deviation%

Daily weather events - atmospheric fields - single level

ParameterDescriptionUnits
10fgg1010 metre wind gust of at least 10 m/s%
10fgg1510 metre wind gust of at least 15 m/s%
10fgg2510 metre wind gust of at least 25 m/s%
tpg1Total precipitation of at least 1 mm%
tpg10Total precipitation of at least 10 mm%
tpg100Total precipitation of at least 100 mm%
tpg20Total precipitation of at least 20 mm%
tpg25Total precipitation of at least 25 mm%
tpg5Total precipitation of at least 5 mm%
tpg50Total precipitation of at least 50 mm%

Instantaneous weather events - ocean waves fields

ParameterDescriptionUnits
swhg2Significant wave height of at least 2 m%
swhg4Significant wave height of at least 4 m%
swhg6Significant wave height of at least 6 m%
swhg8Significant wave height of at least 8 m%

Ensemble numbers

You can select individual members of the ensemble forecast use the keyword number.

...
   stream="enfo",
   step=24,
   param="msl",
   number=1,
...
   stream="enfo",
   step=24,
   param="msl",
   number=[1, 10, 20],
...
List of ensemble numbers
1 to 50

📌 NOTE: Not specifying number will return all ensemble forecast members.

Examples

Download a single surface parameter at a single forecast step from ECMWF's 00UTC HRES forecast

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="oper",
    type="fc",
    step=24,
    param="2t",
    target="data.grib2",
)

Download the tropical cyclone tracks from ECMWF's 00UTC HRES forecast

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="oper",
    type="tf",
    step=240,
    target="data.bufr",
)
  • The downloaded data are encoded in BUFR edition 4
  • For the HRES Tropical Cyclone tracks at time=06 and time=18 use:
...
   step = 90,
...

NOTE: Tropical cyclone tracks products are only available when there are tropical cyclones observed or forecast.

Download a single surface parameter at a single forecast step for all ensemble members from ECMWF's 12UTC 00UTC ENS forecast

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="enfo",
    type="pf",
    param="msl",
    target="data.grib2",
)
  • To download a single ensemble member, use the number keyword: number=1.
  • All of the odd numbered ensemble members use number=[num for num in range(1,51,2)].
  • To download the control member, use type="cf".

Download the Tropical Cyclone tracks from ECMWF's 00UTC ENS forecast

The Tropical Cyclone tracks are identified by the keyword type="tf".

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="enfo",
    type="tf",
    step=240,
    target="data.bufr",
)
  • The downloaded data are encoded in BUFR edition 4
  • For the ENS Tropical Cyclone tracks at time=06 and time=18 replace step=240 with step=144.

Download the ensemble mean and standard deviation for all parameters at a single forecast step from ECMWF's 00UTC ENS forecast

The ensemble mean and standard deviation are identified by the keywords type="em":

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="enfo",
    type="em",
    step=24,
    target="data.grib2",
)

and type="es", respectively:

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="enfo",
    type="es",
    step=24,
    target="data.grib2",
)

Download the ensemble probability products

The ensemble probability products are identified by the keyword type="ep". The probability products are available only for time=00 and time=12.

Two different products are available.

Probabilities - Instantaneous weather events - Pressure levels

The probability of temperature standardized anomalies at a constant pressure level of 850hPa are available at 12 hourly forecast steps.

from ecmwf.opendata import Client

client = Client(source="ecmwf")

client.retrieve(
    time=0,
    stream="enfo",
    type="ep",
    step=[i for i in range(12, 361, 12)],
    levelist=850,
    param=[
        "ptsa_gt_1stdev",
        "ptsa_gt_1p5stdev",
        "ptsa_gt_2stdev",
        "ptsa_lt_1stdev",
        "ptsa_lt_1p5stdev",
        "ptsa_lt_2stdev",
    ],
    target="data.grib2",
)
Probabilities - Daily weather events - Single level

The probabilities of total precipitation and wind gusts exceeding specified thresholds in a 24 hour period are available for step ranges 0-24 to 336-360 by 12​​. These are specified in the retrieval request using, e.g.: step=["0-24", "12-36", "24-48"].

from ecmwf.opendata import Client

client = Client(source="ecmwf")

steps = [f"{12 * i}-{ 12 * i + 24}" for i in range(29)]

client.retrieve(
    time=0,
    stream="enfo",
    type="ep",
    step=steps,
    param=["tpg1", "tpg5", "10fgg10"],
    target="data.grib2",
)

ECMWF open data license

By downloading data from the ECMWF open data dataset, you agree to the their terms: Attribution 4.0 International (CC BY 4.0). If you do not agree with such terms, do not download the data. Visit this page for more information.

License

Apache License 2.0 In applying this licence, ECMWF does not waive the privileges and immunities granted to it by virtue of its status as an intergovernmental organisation nor does it submit to any jurisdiction.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc