pip install flashtext2
flashtext2
flashtext2
is an optimized version of the flashtext
library for fast keyword extraction and replacement.
Its orders of magnitude faster compared to regular expressions.
Key Enhancements in flashtext2
- Rewritten for Better Performance: Completely rewritten in Rust, making it approximately 3-10x faster than the original version.
- Unicode Standard Annex #29: Instead of relying on arbitrary regex patterns like flashtext
does:
[A-Za-z0-9_]+
,
flashtext2 uses the Unicode Standard Annex #29 to split strings into tokens.
This ensures compatibility with all languages, not just Latin-based ones. - Unicode Case Folding: Instead of converting strings to lowercase for case-insensitive matches, it uses
Unicode case folding, ensuring accurate normalization
of characters according to the Unicode standard.
- Fully Type-Hinted API: The entire API is fully type-hinted, providing better code clarity and improved development experience.
Usage
Click to unfold usage
from flashtext2 import KeywordProcessor
kp = KeywordProcessor(case_sensitive=False)
kp.add_keyword('Python')
kp.add_keyword('flashtext')
kp.add_keyword('program')
text = "I love programming in Python and using the flashtext library."
keywords_found = kp.extract_keywords(text)
print(keywords_found)
keywords_found = kp.extract_keywords_with_span(text)
print(keywords_found)
Keyword Replacement
from flashtext2 import KeywordProcessor
kp = KeywordProcessor(case_sensitive=False)
kp.add_keyword('Java', 'Python')
kp.add_keyword('regex', 'flashtext')
text = "I love programming in Java and using the regex library."
new_text = kp.replace_keywords(text)
print(new_text)
Case Sensitivity
from flashtext2 import KeywordProcessor
text = 'abc aBc ABC'
kp = KeywordProcessor(case_sensitive=True)
kp.add_keyword('aBc')
print(kp.extract_keywords(text))
kp = KeywordProcessor(case_sensitive=False)
kp.add_keyword('aBc')
print(kp.extract_keywords(text))
Other Examples
Overlapping keywords (returns the longest sequence)
from flashtext2 import KeywordProcessor
kp = KeywordProcessor(case_sensitive=True)
kp.add_keyword('machine')
kp.add_keyword('machine learning')
text = "machine learning is a subset of artificial intelligence"
print(kp.extract_keywords(text))
Case folding
from flashtext2 import KeywordProcessor
kp = KeywordProcessor(case_sensitive=False)
kp.add_keywords_from_iter(["flour", "Maße", "ᾲ στο διάολο"])
text = "flour, MASSE, ὰι στο διάολο"
print(kp.extract_keywords(text))
Performance
Click to unfold performance
Extracting keywords is usually 2.5-3x faster, and replacing them is about 10x.
There is still room to optimize the code and improve performance.
You can find the benchmarks here.


The words have on average 6 characters, and a sentence has 10k words, so the length is 60k.
TODO
Click to unfold TODO
- Add multiple ways of normalizing strings: simple case folding, full case folding, and locale-aware folding
- Remove all clones in src code
Credit to Vikash Singh, the author of the original flashtext
package.