Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

gcp-pal

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gcp-pal

Set of utilities for interacting with Google Cloud Platform

  • 1.0.41
  • PyPI
  • Socket score

Maintainers
1

GCP Pal Library

Downloads

The gcp-pal library provides a set of utilities for interacting with Google Cloud Platform (GCP) services, streamlining the process of implementing GCP functionalities within your Python applications.

The utilities are designed to work with the google-cloud Python libraries, providing a more user-friendly and intuitive interface for common tasks.


Table of Contents

ModulePython Class
Firestoregcp_pal.Firestore
BigQuerygcp_pal.BigQuery
Storagegcp_pal.Storage
Cloud Functionsgcp_pal.CloudFunctions
Cloud Rungcp_pal.CloudRun
Dockergcp_pal.Docker
Logginggcp_pal.Logging
Secret Managergcp_pal.SecretManager
Cloud Schedulergcp_pal.CloudScheduler
Projectgcp_pal.Project
Dataplexgcp_pal.Dataplex
Artifact Registrygcp_pal.ArtifactRegistry
PubSubgcp_pal.PubSub
Requestgcp_pal.Request
Schemagcp_pal.Schema
Parquetgcp_pal.Parquet

Installation

The package is available on PyPI as gcp-pal. To install with pip:

pip install gcp-pal

The library has module-specific dependencies. These can be installed via pip install gcp-pal[ModuleName], e.g.:

pip install gcp-pal[BigQuery]
# Installing 'google-cloud-bigquery'
pip install gcp-pal[CloudRun]
# Installing 'google-cloud-run' and 'docker'

To install all optional dependencies:

pip install gcp-pal[all]

The modules are also set up to notify the user if any required libraries are missing. For example, when attempting to use the Firestore module:

from gcp_pal import Firestore
Firestore()
# ImportError: Module 'Firestore' requires 'google.cloud.firestore' (PyPI: 'google-cloud-firestore') to be installed.

Which lets the user know that the google-cloud-firestore package is required to use the Firestore module.


Configuration

Before you can start using the gcp-pal library with Firestore or any other GCP services, make sure you either have set up your GCP credentials properly or have the necessary permissions to access the services you want to use:

gcloud auth application-default login

And specify the project ID to be used as the default for all API requests:

gcloud config set project PROJECT_ID

You can also specify the default variables such as project ID and location using environmental variables. The reserved variables are GCP_PAL_PROJECT and GCP_PAL_PROJECT:

export GCP_PROJECT_ID=project-id
export GCP_LOCATION=us-central1

The order of precendece is as follows:

1. Keyword arguments (e.g. BigQuery(project="project-id"))
2. Environmental variables (e.g. export GCP_PROJECT_ID=project-id)
3. Default project set in gcloud (e.g. gcloud config set project project-id)
4. None

Firestore Module

The Firestore module in the gcp-pal library allows you to perform read and write operations on Firestore documents and collections.

Initializing Firestore

First, import the Firestore class from the gcp_pal module:

from gcp_pal import Firestore

Writing Data to Firestore

To write data to a Firestore document, create a dictionary with your data, specify the path to your document, and use the write method:

data = {
    "field1": "value1",
    "field2": "value2"
}

path = "collection/document"
Firestore(path).write(data)

Reading Data from Firestore

To read a single document from Firestore, specify the document's path and use the read method:

path = "collection/document"
document = Firestore(path).read()
print(document)
# Output: {'field1': 'value1', 'field2': 'value2'}

Reading All Documents in a Collection

To read all documents within a specific collection, specify the collection's path and use the read method:

path = "collection"
documents = Firestore(path).read()
print(documents)
# Output: {'document': {'field1': 'value1', 'field2': 'value2'}}

Working with Pandas DataFrames

The Firestore module also supports writing and reading Pandas DataFrames, preserving their structure and data types:

import pandas as pd

# Example DataFrame
df = pd.DataFrame({
    "field1": ["value1"],
    "field2": ["value2"]
})

path = "collection/document"
Firestore(path).write(df)

read_df = Firestore(path).read()
print(read_df)
# Output:
#    field1 field2
# 0  value1 value2

List the Firestore documents and collections

To list all documents and collections within a Firestore database, use the ls method similar to bash:

colls = Firestore().ls()
print(colls)
# Output: ['collection']
docs = Firestore("collection").ls()
print(docs)
# Output: ['document1', 'document2']

BigQuery Module

The BigQuery module in the gcp-pal library allows you to perform read and write operations on BigQuery datasets and tables.

Initializing BigQuery

Import the BigQuery class from the gcp_pal module:

from gcp_pal import BigQuery

Listing objects

To list all objects (datasets and tables) within a BigQuery project, use the ls method similar to bash:

datasets = BigQuery().ls()
print(datasets)
# Output: ['dataset1', 'dataset2']
tables = BigQuery(dataset="dataset1").ls()
print(tables)
# Output: ['table1', 'table2']

Creating objects

To create an object (dataset or table) within a BigQuery project, initialize the BigQuery class with the object's path and use the create method:

BigQuery(dataset="new-dataset").create()
# Output: Dataset "new-dataset" created
BigQuery("new-dataset2.new-table").create(schema=schema) 
# Output: Dataset "new-dataset2" created, table "new-dataset2.new-table" created

To create a table from a Pandas DataFrame, pass the DataFrame to the create method:

df = pd.DataFrame({
    "field1": ["value1"],
    "field2": ["value2"]
})
BigQuery("new-dataset3.new-table").create(data=df)
# Output: Dataset "new-dataset3" created, table "new-dataset3.new-table" created, data inserted

Deleting objects

Deleting objects is similar to creating them, but you use the delete method instead:

BigQuery(dataset="dataset").delete()
# Output: Dataset "dataset" and all its tables deleted
BigQuery("dataset.table").delete()
# Output: Table "dataset.table" deleted

Querying data

To read data from a BigQuery table, use the query method:

query = "SELECT * FROM dataset.table"
data = BigQuery().query(query)
print(data)
# Output: [{'field1': 'value1', 'field2': 'value2'}]

Alternatively, there is a simple read method to read the data from a table with the given columns, filters and limit:

data = BigQuery("dataset.table").read(
    columns=["field1"],
    filters=[("field1", "=", "value1")],
    limit=1,
    to_dataframe=True,
)
print(data)
# Output: pd.DataFrame({'field1': ['value1']})

By default, the read method returns a Pandas DataFrame, but you can also get the data as a list of dictionaries by setting the to_dataframe parameter to False.

Inserting data

To insert data into a BigQuery table, use the insert method:

data = {
    "field1": "value1",
    "field2": "value2"
}
BigQuery("dataset.table").insert(data)
# Output: Data inserted

External tables

One can also create BigQuery external tables by specifying the file path:

file_path = "gs://bucket/file.parquet"
BigQuery("dataset.external_table").create(file_path)
# Output: Dataset "dataset" created, external table "dataset.external_table" created

The allowed file formats are CSV, JSON, Avro, Parquet (single and partitioned), ORC.


Storage Module

The Storage module in the gcp-pal library allows you to perform read and write operations on Google Cloud Storage buckets and objects.

Initializing Storage

Import the Storage class from the gcp_pal module:

from gcp_pal import Storage

Listing objects

Similar to the other modules, listing objects in a bucket is done using the ls method:

buckets = Storage().ls()
print(buckets)
# Output: ['bucket1', 'bucket2']
objects = Storage("bucket1").ls()
print(objects)
# Output: ['object1', 'object2']

Creating buckets

To create a bucket, use the create method:

Storage("new-bucket").create()
# Output: Bucket "new-bucket" created

Deleting objects

Deleting objects is similar to creating them, but you use the delete method instead:

Storage("bucket").delete()
# Output: Bucket "bucket" and all its objects deleted
Storage("bucket/object").delete()
# Output: Object "object" in bucket "bucket" deleted

Uploading and downloading objects

To upload an object to a bucket, use the upload method:

Storage("bucket/uploaded_file.txt").upload("local_file.txt")
# Output: File "local_file.txt" uploaded to "bucket/uploaded_file.txt"

To download an object from a bucket, use the download method:

Storage("bucket/uploaded_file.txt").download("downloaded_file.txt")
# Output: File "bucket/uploaded_file.txt" downloaded to "downloaded_file.txt"

Cloud Functions Module

The Cloud Functions module in the gcp-pal library allows you to deploy and manage Cloud Functions.

Initializing Cloud Functions

Import the CloudFunctions class from the gcp_pal module:

from gcp_pal import CloudFunctions

Deploying Cloud Functions

To deploy a Cloud Function, specifty the function's name, the source codebase, the entry point and any other parameters that are to be passed to BuildConfig, ServiceConfig and Function (see docs):

CloudFunctions("function-name").deploy(
    path="path/to/function_codebase",
    entry_point="main",
    environment=2,
)

Deploying a Cloud Function from a local source depends on the gcp_toole.Storage module. By default, the source codebase is uploaded to the gcf-v2-sources-{PROJECT_NUMBER}-{REGION} bucket and is deployed from there. An alternative bucket can be specified via the source_bucket parameter:

CloudFunctions("function-name").deploy(
    path="path/to/function_codebase",
    entry_point="main",
    environment=2,
    source_bucket="bucket-name",
)

Listing Cloud Functions

To list all Cloud Functions within a project, use the ls method:

functions = CloudFunctions().ls()
print(functions)
# Output: ['function1', 'function2']

Deleting Cloud Functions

To delete a Cloud Function, use the delete method:

CloudFunctions("function-name").delete()
# Output: Cloud Function "function-name" deleted

Invoking Cloud Functions

To invoke a Cloud Function, use the invoke (or call) method:

response = CloudFunctions("function-name").invoke({"key": "value"})
print(response)
# Output: {'output_key': 'output_value'}

Getting Cloud Function details

To get the details of a Cloud Function, use the get method:

details = CloudFunctions("function-name").get()
print(details)
# Output: {'name': 'projects/project-id/locations/region/functions/function-name', 
#          'build_config': {...}, 'service_config': {...}, 'state': {...}, ... }

Using service accounts

Service account email can be specified either within the constructor or via the service_account parameter:

CloudFunctions("function-name", service_account="account@email.com").deploy(**kwargs)
# or
CloudFunctions("function-name").deploy(service_account="account@email.com", **kwargs)

Cloud Run Module

The Cloud Run module in the gcp-pal library allows you to deploy and manage Cloud Run services.

Initializing Cloud Run

Import the CloudRun class from the gcp_pal module:

from gcp_pal import CloudRun

Deploying Cloud Run services

CloudRun("test-app").deploy(path="samples/cloud_run")
# Output: 
# - Docker image "test-app" built based on "samples/cloud_run" codebase and "samples/cloud_run/Dockerfile".
# - Docker image "test-app" pushed to Google Container Registry as "gcr.io/{PROJECT_ID}/test-app:random_tag".
# - Cloud Run service "test-app" deployed from "gcr.io/{PROJECT_ID}/test-app:random_tag".

The default tag is a random string but can be specified via the image_tag parameter:

CloudRun("test-app").deploy(path="samples/cloud_run", image_tag="5fbd72c")
# Output: Cloud Run service deployed

Listing Cloud Run services

To list all Cloud Run services within a project, use the ls method:

services = CloudRun().ls()
print(services)
# Output: ['service1', 'service2']

To list the job, set the job parameter to True:

jobs = CloudRun(job=True).ls()
print(jobs)
# Output: ['job1', 'job2']

Deleting Cloud Run services

To delete a Cloud Run service, use the delete method:

CloudRun("service-name").delete()
# Output: Cloud Run service "service-name" deleted

Similarly to delete a job, set the job parameter to True:

CloudRun("job-name", job=True).delete()

Invoking Cloud Run services

To invoke a Cloud Run service, use the invoke/call method:

response = CloudRun("service-name").invoke({"key": "value"})
print(response)
# Output: {'output_key': 'output_value'}

Getting Cloud Run service details

To get the details of a Cloud Run service, use the get method:

details = CloudRun("service-name").get()
print(details)
# Output: ...

To get the status of a Cloud Run service, use the status/state method:

service_status = CloudRun("service-name").status()
print(service_status)
# Output: Active
job_status = CloudRun("job-name", job=True).status()
print(job_status)
# Output: Active

Using service accounts

Service account email can be specified either within the constructor or via the service_account parameter:

CloudRun("run-name", service_account="account@email.com").deploy(**kwargs)
# or
CloudRun("run-name").deploy(service_account="account@email.com", **kwargs)

Docker Module

The Docker module in the gcp-pal library allows you to build and push Docker images to Google Container Registry.

Initializing Docker

Import the Docker class from the gcp_pal module:

from gcp_pal import Docker

Building Docker images

Docker("image-name").build(path="path/to/context", dockerfile="Dockerfile")
# Output: Docker image "image-name:latest" built based on "path/to/context" codebase and "path/to/context/Dockerfile".

The default tag is "latest" but can be specified via the tag parameter:

Docker("image-name", tag="5fbd72c").build(path="path/to/context", dockerfile="Dockerfile")
# Output: Docker image "image-name:5fbd72c" built based on "path/to/context" codebase and "path/to/context/Dockerfile".

Pushing Docker images

Docker("image-name").push()
# Output: Docker image "image-name" pushed to Google Container Registry.

The default destination is "gcr.io/{PROJECT_ID}/{IMAGE_NAME}:{TAG}" but can be specified via the destination parameter:

Docker("image-name").push(destination="gcr.io/my-project/image-name:5fbd72c")
# Output: Docker image "image-name" pushed to "gcr.io/my-project/image-name:5fbd72c".

Logging Module

The Logging module in the gcp-pal library allows you to access and manage logs from Google Cloud Logging.

Initializing Logging

Import the Logging class from the gcp_pal module:

from gcp_pal import Logging

Listing logs

To list all logs within a project, use the ls method:

logs = Logging().ls(limit=2)
for log in logs:
    print(log)
# Output: LogEntry - [2024-04-16 17:30:04.308 UTC] {Message payload}

Where each entry is a LogEntry object with the following attributes: project, log_name, resource, severity, message, timestamp, time_zone, timestamp_str.

The message attribute is the main payload of the log entry.

Filtering logs

To filter logs based on a query, use the filter method:

logs = Logging().ls(filter="severity=ERROR")
# Output: [LogEntry - [2024-04-16 17:30:04.308 UTC] {Message payload}, ...]

Some common filters are also supported natively: severity (str), time_start (str), time_end (str), time_range (int: hours). For example, the following are equivalent:

# Time now: 2024-04-16 17:30:04.308 UTC
logs = Logging().ls(filter="severity=ERROR AND time_start=2024-04-16T16:30:04.308Z AND time_end=2024-04-16T17:30:04.308Z")
logs = Logging().ls(severity="ERROR", time_start="2024-04-16T16:30:04.308Z", time_end="2024-04-16T17:30:04.308Z")
logs = Logging().ls(severity="ERROR", time_range=1)

Streaming logs

To stream logs in real-time, use the stream method:

Logging().stream()
# LogEntry - [2024-04-16 17:30:04.308 UTC] {Message payload}
# LogEntry - [2024-04-16 17:30:05.308 UTC] {Message payload}
# ...

Secret Manager Module

The Secret Manager module in the gcp-pal library allows you to access and manage secrets from Google Cloud Secret Manager.

Initializing Secret Manager

Import the SecretManager class from the gcp_pal module:

from gcp_pal import SecretManager

Creating secrets

To create a secret, specify the secret's name and value:

SecretManager("secret1").create("value1", labels={"env": "dev"})
# Output: Secret 'secret1' created

Listing secrets

To list all secrets within a project, use the ls method:

secrets = SecretManager().ls()
print(secrets)
# Output: ['secret1', 'secret2']

The ls method also supports filtering secrets based on filter or label parameters:

secrets = SecretManager().ls(filter="name:secret1")
print(secrets)
# Output: ['secret1']
secrets = SecretManager().ls(label="env:*")
print(secrets)
# Output: ['secret1', 'secret2']

Accessing secrets

To access the value of a secret, use the value method:

value = SecretManager("secret1").value()
print(value)
# Output: 'value1'

Deleting secrets

To delete a secret, use the delete method:

SecretManager("secret1").delete()
# Output: Secret 'secret1' deleted

Cloud Scheduler Module

The Cloud Scheduler module in the gcp-pal library allows you to create and manage Cloud Scheduler jobs.

Initializing Cloud Scheduler

Import the CloudScheduler class from the gcp_pal module:

from gcp_pal import CloudScheduler

Creating Cloud Scheduler jobs

To create a Cloud Scheduler job, specify the job's name in the constructor, and use the create method to set the schedule and target:

CloudScheduler("job-name").create(
    schedule="* * * * *",
    time_zone="UTC",
    target="https://example.com/api",
    payload={"key": "value"},
)
# Output: Cloud Scheduler job "job-name" created with HTTP target "https://example.com/api"

If the target is not an HTTP endpoint, it will be treated as a PubSub topic:

CloudScheduler("job-name").create(
    schedule="* * * * *",
    time_zone="UTC",
    target="pubsub-topic-name",
    payload={"key": "value"},
)
# Output: Cloud Scheduler job "job-name" created with PubSub target "pubsub-topic-name"

Additionally, service_account can be specified to add the OAuth and OIDC tokens to the request:

CloudScheduler("job-name").create(
    schedule="* * * * *",
    time_zone="UTC",
    target="https://example.com/api",
    payload={"key": "value"},
    service_account="PROJECT@PROJECT.iam.gserviceaccount.com",
)
# Output: Cloud Scheduler job "job-name" created with HTTP target "https://example.com/api" and OAuth+OIDC tokens

Listing Cloud Scheduler jobs

To list all Cloud Scheduler jobs within a project, use the ls method:

jobs = CloudScheduler().ls()
print(jobs)
# Output: ['job1', 'job2']

Deleting Cloud Scheduler jobs

To delete a Cloud Scheduler job, use the delete method:

CloudScheduler("job-name").delete()
# Output: Cloud Scheduler job "job-name" deleted

Managing Cloud Scheduler jobs

To pause or resume a Cloud Scheduler job, use the pause or resume methods:

CloudScheduler("job-name").pause()
# Output: Cloud Scheduler job "job-name" paused
CloudScheduler("job-name").resume()
# Output: Cloud Scheduler job "job-name" resumed

To run a Cloud Scheduler job immediately, use the run method:

CloudScheduler("job-name").run()
# Output: Cloud Scheduler job "job-name" run

If the job is paused, it will be resumed before running. To prevent this, set the force parameter to False:

CloudScheduler("job-name").run(force=False)
# Output: Cloud Scheduler job "job-name" not run if it is paused

Using service accounts

Service account email can be specified either within the constructor or via the service_account parameter:

CloudScheduler("job-name", service_account="account@email.com").create(**kwargs)
# or
CloudScheduler("job-name").create(service_account="account@email.com", **kwargs)

Project Module

The Project module in the gcp-pal library allows you to access and manage Google Cloud projects.

Initializing Project

Import the Project class from the gcp_pal module:

from gcp_pal import Project

Listing projects

To list all projects available to the authenticated user, use the ls method:

projects = Project().ls()
print(projects)
# Output: ['project1', 'project2']

Creating projects

To create a new project, use the create method:

Project("new-project").create()
# Output: Project "new-project" created

Deleting projects

To delete a project, use the delete method:

Project("project-name").delete()
# Output: Project "project-name" deleted

Google Cloud will delete the project after 30 days. During this time, to undelete a project, use the undelete method:

Project("project-name").undelete()
# Output: Project "project-name" undeleted

Getting project details

To get the details of a project, use the get method:

details = Project("project-name").get()
print(details)
# Output: {'name': 'projects/project-id', 'project_id': 'project-id', ...}

To obtain the project number use the number method:

project_number = Project("project-name").number()
print(project_number)
# Output: "1234567890"

Dataplex Module

The Dataplex module in the gcp-pal library allows you to interact with Dataplex services.

Initializing Dataplex

Import the Dataplex class from the gcp_pal module:

from gcp_pal import Dataplex

Listing Dataplex objects

The Dataplex module supports listing all lakes, zones, and assets within a Dataplex instance:

lakes = Dataplex().ls()
print(lakes)
# Output: ['lake1', 'lake2']
zones = Dataplex("lake1").ls()
print(zones)
# Output: ['zone1', 'zone2']
assets = Dataplex("lake1/zone1").ls()
print(assets)
# Output: ['asset1', 'asset2']

Creating Dataplex objects

To create a lake, zone, or asset within a Dataplex instance, use the create_lake, create_zone, and create_asset methods.

To create a lake:

Dataplex("lake1").create_lake()
# Output: Lake "lake1" created

To create a zone (zone type and location type are required):

Dataplex("lake1/zone1").create_zone(zone_type="raw", location_type="single-region")
# Output: Zone "zone1" created in Lake "lake1"

To create an asset (asset source and asset type are required):

Dataplex("lake1/zone1").create_asset(asset_source="dataset_name", asset_type="bigquery")
# Output: Asset "asset1" created in Zone "zone1" of Lake "lake1"

Deleting Dataplex objects

Deleting objects can be done using a single delete method:

Dataplex("lake1/zone1/asset1").delete()
# Output: Asset "asset1" deleted
Dataplax("lake1/zone1").delete()
# Output: Zone "zone1" and all its assets deleted
Dataplex("lake1").delete()
# Output: Lake "lake1" and all its zones and assets deleted

Artifact Registry

The Artifact Registry module in the gcp-pal library allows you to interact with Artifact Registry services.

Initializing Artifact Registry

Import the ArtifactRegistry class from the gcp_pal module:

from gcp_pal import ArtifactRegistry

Listing Artifact Registry objects

The objects within Artifact Registry module follow the hierarchy: repositories > packages > versions > tags.

To list all repositories within a project, use the ls method:

repositories = ArtifactRegistry().ls()
print(repositories)
# Output: ['repo1', 'repo2']

To list all packages (or "images") within a repository, use the ls method with the repository name:

images = ArtifactRegistry("repo1").ls()
print(images)
# Output: ['image1', 'image2']

To list all versions of a package, use the ls method with the repository and package names:

versions = ArtifactRegistry("repo1/image1").ls()
print(versions)
# Output: ['repo1/image1/sha256:version1', 'repo1/image1/sha256:version2']

To list all tags of a version, use the ls method with the repository, package, and version names:

tags = ArtifactRegistry("repo1/image1/sha256:version1").ls()
print(tags)
# Output: ['repo1/image1/tag1', 'repo1/image1/tag2']

Creating Artifact Registry objects

To create a repository, use the create_repository method with the repository name:

ArtifactRegistry("repo1").create_repository()
# Output: Repository "repo1" created

Some additional parameters can be specified within the method, such as format ("docker" or "maven"), mode ('standard', 'remote' or 'virtual').

To create a tag, use the create_tag method with the repository, package, version, and tag names:

ArtifactRegistry("repo1/image1/sha256:version1").create_tag("tag1")
# Output: Tag "tag1" created for version "version1" of package "image1" in repository "repo1"

Deleting Artifact Registry objects

Deleting objects can be done using a single delete method:

ArtifactRegistry("repo1/image1:tag1").delete()
# Output: Tag "tag1" deleted for package "image1" in repository "repo1"
ArtifactRegistry("repo1/image1/sha256:version1").delete()
# Output: Version "version1" deleted for package "image1" in repository "repo1"
ArtifactRegistry("repo1/image1").delete()
# Output: Package "image1" deleted in repository "repo1"
ArtifactRegistry("repo1").delete()
# Output: Repository "repo1" deleted

PubSub Module

The PubSub module in the gcp-pal library allows you to publish and subscribe to PubSub topics.

Initializing PubSub

First, import the PubSub class from the gcp_pal module:

from gcp_pal import PubSub

The PubSub prefers to take the path argument in the format project/topic/subscription:

PubSub("my-project/my-topic/my-subscription")

Alternatively, you can specify the project and topic/subscription separately:

PubSub(project="my-project", topic="my-topic", subscription="my-subscription")

Listing objects

To list all topics within a project or all subscriptions within a topic, use the ls method:

topics = PubSub("my-project").ls()
# Output: ['topic1', 'topic2']
subscriptions = PubSub("my-project/topic1").ls()
# Output: ['subscription1', 'subscription2']

Or to list all subscriptions within a project:

subscriptions = PubSub("my-project").ls_subscriptions()
# Output: ['subscription1', 'subscription2', ...]

Creating objects

To create a PubSub topic, use the create method:

PubSub("my-project/new-topic").create()
# Output: PubSub topic "new-topic" created

To create a PubSub subscription, use the create method with the topic parameter:

PubSub("my-project/my-topic/new-subscription").create()

Deleting objects

To delete a PubSub topic or subscription, use the delete method:

PubSub("my-project/topic/subscription").delete()
# Output: PubSub subscription "subscription" deleted
PubSub("my-project/topic").delete()
# Output: PubSub topic "topic" deleted

To delete a subscription without specifying the topic, use the subscription parameter:

PubSub(subscription="my-project/subscription").delete()
# Output: PubSub subscription "subscription" deleted

Publishing Messages to a Topic

To publish a message to a PubSub topic, specify the topic's name and the message you want to publish:

topic = "topic-name"
message = "Hello, PubSub!"
PubSub(topic).publish(message)

Request Module

The Request module in the gcp-pal library allows you to make authorized HTTP requests.

Initializing Request

Import the Request class from the gcp_pal module:

from gcp_pal import Request

Making Authorized Get/Post/Put Requests

To make an authorized requests, specify the URL you want to access and use the relevant method:

url = "https://example.com/api"

get_response = Request(url).get()
print(get_response)
# Output: <Response [200]>
post_response = Request(url).post(data={"key": "value"})
print(post_response)
# Output: <Response [201]>
put_response = Request(url).put(data={"key": "value"})
print(put_response)
# Output: <Response [200]>

Using service accounts

Specify the service account email to make requests on behalf of a service account within the constructor:

Request(url, service_account="account@email.com").get()

Schema Module

The Schema module is not strictly GCP-related, but it is a useful utility. It allows one to translate schemas between different formats, such as Python, PyArrow, BigQuery, and Pandas.

Initializing Schema

Import the Schema class from the gcp_pal module:

from gcp_pal.schema import Schema

Translating schemas

To translate a schema from one format to another, use the respective methods:

str_schema = {
    "a": "int",
    "b": "str",
    "c": "float",
    "d": {
        "d1": "datetime",
        "d2": "timestamp",
    },
}
python_schema = Schema(str_schema).str()
# {
#    "a": int,
#    "b": str,
#    "c": float,
#    "d": {
#        "d1": datetime,
#        "d2": datetime,
#    },
# }
pyarrow_schema = Schema(str_schema).pyarrow()
# pa.schema(
#    [
#        pa.field("a", pa.int64()),
#        pa.field("b", pa.string()),
#        pa.field("c", pa.float64()),
#        pa.field("d", pa.struct([
#            pa.field("d1", pa.timestamp("ns")),
#            pa.field("d2", pa.timestamp("ns")),
#        ])),
#    ]
# )
bigquery_schema = Schema(str_schema).bigquery()
# [
#     bigquery.SchemaField("a", "INTEGER"),
#     bigquery.SchemaField("b", "STRING"),
#     bigquery.SchemaField("c", "FLOAT"),
#     bigquery.SchemaField("d", "RECORD", fields=[
#        bigquery.SchemaField("d1", "DATETIME"),
#        bigquery.SchemaField("d2", "TIMESTAMP"),
#     ]),
# ]
pandas_schema = Schema(str_schema).pandas()
# {
#    "a": "int64",
#    "b": "object",
#    "c": "float64",
#    "d": {
#        "d1": "datetime64[ns]",
#        "d2": "datetime64[ns]",
#    },
# }

Infering schemas

To infer and translate a schema from a dictionary of data or a Pandas DataFrame, use the is_data parameter:

df = pd.DataFrame(
    {
        "a": [1, 2, 3],
        "b": ["a", "b", "c"],
        "c": [1.0, 2.0, 3.0],
        "date": [datetime.datetime.now() for _ in range(3)],
    }
)
inferred_schema = Schema(df, is_data=True).schema
# {
#   "a": "int",
#   "b": "str",
#   "c": "float",
#   "date": "datetime",
# }
pyarrow_schema = Schema(df, is_data=True).pyarrow()
# pa.schema(
#    [
#        pa.field("a", pa.int64()),
#        pa.field("b", pa.string()),
#        pa.field("c", pa.float64()),
#        pa.field("date", pa.timestamp("ns")),
#    ]
# )

Parquet Module

The Parquet module in the gcp-pal library allows you to read and write Parquet files in Google Cloud Storage. The gcp_pal.Storage module uses this module to read and write Parquet files to and from Google Cloud Storage.

Initializing Parquet

Import the Parquet class from the gcp_pal module:

from gcp_pal import Parquet

Reading Parquet files

To read a Parquet file from Google Cloud Storage, use the read method:

data = Parquet("bucket/file.parquet").read()
print(data)
# Output: pd.DataFrame({'field1': ['value1'], 'field2': ['value2']})

Writing Parquet files

To write a Pandas DataFrame to a Parquet file in Google Cloud Storage, use the write method:

df = pd.DataFrame({
    "field1": ["value1"],
    "field2": ["value2"]
})
Parquet("bucket/file.parquet").write(df)
# Output: Parquet file "file.parquet" created in "bucket"

Partitioning can be specified via the partition_cols parameter:

Parquet("bucket/file.parquet").write(df, partition_cols=["field1"])
# Output: Parquet file "file.parquet" created in "bucket" partitioned by "field1"

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc