Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Use natural language interface to generate, deploy and update your microservice infrastructure.
Turn your natural language descriptions into fully functional, deployed AI-powered microservices with a single command! Your imagination is the limit!
This project streamlines the creation and deployment of AI-powered microservices. Simply describe your task using natural language, and the system will automatically build and deploy your microservice. To ensure the microservice accurately aligns with your intended task a test scenario is required.pip install gptdeploy
gptdeploy configure --key <your openai api key>
If you set the environment variable OPENAI_API_KEY
, the configuration step can be skipped.
Your api key must have access to gpt-4 to use this tool.
We are working on a way to use gpt-3.5-turbo as well.
gptdeploy generate \
--description "<description of the microservice>" \
--test "<specification of a test scenario>" \
--model <gpt-3.5 or gpt-4> \
--path </path/to/local/folder>
To generate your personal microservice two things are required:
description
of the task you want to accomplish.test
scenario that ensures the microservice works as expected.model
you want to use - either gpt-3.5
or gpt-4
. gpt-3.5
is ~10x cheaper,
but will not be able to generate as complex microservices.path
on the local drive where the microservice will be generated.The creation process should take between 5 and 15 minutes. During this time, GPT iteratively builds your microservice until it finds a strategy that make your test scenario pass.
Be aware that the costs you have to pay for openai vary between $0.50 and $3.00 per microservice (using GPT-4).
Run the microservice locally in docker. In case docker is not running on your machine, it will try to run it without docker. With this command a playground opens in your browser where you can test the microservice.
gptdeploy run --path <path to microservice>
If you want to deploy your microservice to the cloud a Jina account is required. When creating a Jina account, you get some free credits, which you can use to deploy your microservice ($0.025/hour). If you run out of credits, you can purchase more.
gptdeploy deploy --microservice_path <path to microservice>
To save credits you can delete your microservice via the following commands:
jc list # get the microservice id
jc delete <microservice id>
In this section you can get a feeling for the kind of microservices that can be generated with GPT Deploy.
gptdeploy generate \
--description "The user writes something and gets a related deep compliment." \
--test "Given the word test a deep compliment is generated" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Extract text from a news article URL using Newspaper3k library and generate a summary using gpt." \
--test "input: 'http://fox13now.com/2013/12/30/new-year-new-laws-obamacare-pot-guns-and-drones/' output: assert a summarized version of the article exists" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Convert a chemical formula into a 2D chemical structure diagram" \
--test "C=C, CN=C=O, CCC(=O)O" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "create a 2d rendering of a whole 3d object and x,y,z object rotation using trimesh and pyrender.OffscreenRenderer with os.environ['PYOPENGL_PLATFORM'] = 'egl' and freeglut3-dev library" \
--test "input: https://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj output: assert the image is not completely white or black" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Generate personalized product recommendations based on user product browsing history and the product categories fashion, electronics and sport" \
--test "Test that a user how visited p1(electronics),p2(fashion),p3(fashion) is more likely to buy p4(fashion) than p5(sports)" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Given a search query, find articles on hacker news using the hacker news api and return a list of (title, author, website_link, first_image_on_the_website)" \
--test "searching for GPT gives results" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Given an image, return the image with bounding boxes of all animals (https://pjreddie.com/media/files/yolov3.weights, https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg)" \
--test "https://images.unsplash.com/photo-1444212477490-ca407925329e contains animals" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Generate a meme from an image and a caption" \
--test "Surprised Pikachu: https://media.wired.com/photos/5f87340d114b38fa1f8339f9/master/w_1600%2Cc_limit/Ideas_Surprised_Pikachu_HD.jpg, TOP:When you discovered GPTDeploy" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Given a word, return a list of rhyming words using the datamuse api" \
--test "hello" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Generate a word cloud from a given text" \
--test "Lorem ipsum dolor sit amet, consectetur adipiscing elit." \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Given a 3d object, return vertex count and face count" \
--test "https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/wolf.obj" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Given a URL, extract all tables as csv" \
--test "http://www.ins.tn/statistiques/90" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Create mel spectrograms from audio file" \
--test "https://cdn.pixabay.com/download/audio/2023/02/28/audio_550d815fa5.mp3" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Convert text to speech" \
--test "Hello, welcome to GPT Deploy!" \
--model gpt-4 \
--path microservice
<a href=res/text_to_speech_example.wav>
Your browser does not support the audio element.gptdeploy generate \
--description "Create a heatmap from an image and a list of relative coordinates" \
--test "https://images.unsplash.com/photo-1574786198875-49f5d09fe2d2, [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.2, 0.1], [0.7, 0.2], [0.4, 0.2]]" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Generate QR code from URL" \
--test "https://www.example.com" \
--model gpt-4 \
--path microservice
gptdeploy generate \
--description "Visualize the Mandelbrot set with custom parameters" \
--test "center=-0+1i, zoom=1.0, size=800x800, iterations=1000" \
--model gpt-4 \
--path microservice
gptdeploy generate --description "Convert markdown to HTML" --test "# Hello, welcome to GPT Deploy!"
The graphic below illustrates the process of creating a microservice and deploying it to the cloud elaboration two different implementation strategies.
graph TB
description[description: generate QR code from URL] --> make_strat{think a}
test[test: https://www.example.com] --> make_strat[generate strategies]
make_strat --> implement1[implement strategy 1]
implement1 --> build1{build image}
build1 -->|error message| implement1
build1 -->|failed 10 times| implement2[implement strategy 2]
build1 -->|success| registry[push docker image to registry]
implement2 --> build2{build image}
build2 -->|error message| implement2
build2 -->|failed 10 times| all_failed[all strategies failed]
build2 -->|success| registry[push docker image to registry]
registry --> deploy[deploy microservice]
deploy --> streamlit[generate streamlit playground]
streamlit --> user_run[user tests microservice]
Use natural language interface to generate, deploy and update your microservice infrastructure.
If you want to contribute to this project, feel free to open a PR or an issue. In the following, you can find a list of things that need to be done.
next steps:
Nice to have:
Proposal:
FAQs
Use natural language interface to generate, deploy and update your microservice infrastructure.
We found that gptdeploy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.