Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

h3-pyspark

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

h3-pyspark

PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

  • 1.2.6
  • PyPI
  • Socket score

Maintainers
1
H3 Logo

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark

PyPI version Conda Version License Tests

PySpark bindings for the H3 core library.

For available functions, please see the vanilla Python binding documentation at:

Installation

Via PyPI:

pip install h3-pyspark

Via conda-forge:

conda install -c conda-forge h3-pyspark

Usage

>>> from pyspark.sql import SparkSession, functions as F
>>> import h3_pyspark
>>>
>>> spark = SparkSession.builder.getOrCreate()
>>> df = spark.createDataFrame([{"lat": 37.769377, "lng": -122.388903, 'resolution': 9}])
>>>
>>> df = df.withColumn('h3_9', h3_pyspark.geo_to_h3('lat', 'lng', 'resolution'))
>>> df.show()

+---------+-----------+----------+---------------+
|      lat|        lng|resolution|           h3_9|
+---------+-----------+----------+---------------+
|37.769377|-122.388903|         9|89283082e73ffff|
+---------+-----------+----------+---------------+

Extension Functions

There are also various extension functions available for geospatial common operations which are not available in the vanilla H3 library.

Assumptions

  • You use GeoJSON to represent geometries in your PySpark pipeline (as opposed to WKT)
  • Geometries are stored in a GeoJSON string within a column (such as geometry) in your PySpark dataset
  • Individual H3 cells are stored as a string column (such as h3_9)
  • Sets of H3 cells are stored in an array(string) column (such as h3_9)

Indexing

index_shape(geometry: Column, resolution: Column)

Generate an H3 spatial index for an input GeoJSON geometry column.

This function accepts GeoJSON Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon input features, and returns the set of H3 cells at the specified resolution which completely cover them (could be more than one cell for a substantially large geometry and substantially granular resolution).

The schema of the output column will be T.ArrayType(T.StringType()), where each value in the array is an H3 cell.

This spatial index can then be used for bucketing, clustering, and joins in Spark via an explode() operation.

>>> from pyspark.sql import SparkSession, functions as F
>>> from h3_pyspark.indexing import index_shape
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> df = spark.createDataFrame([{
        'geometry': '{ "type": "MultiPolygon", "coordinates": [ [ [ [ -80.79442262649536, 32.13522895845023 ], [ -80.79298496246338, 32.13522895845023 ], [ -80.79298496246338, 32.13602844594619 ], [ -80.79442262649536, 32.13602844594619 ], [ -80.79442262649536, 32.13522895845023 ] ] ], [ [ [ -80.7923412322998, 32.1330848437511 ], [ -80.79073190689087, 32.1330848437511 ], [ -80.79073190689087, 32.13375715632646 ], [ -80.7923412322998, 32.13375715632646 ], [ -80.7923412322998, 32.1330848437511 ] ] ] ] }',

        'resolution': 9
    }])
>>>
>>> df = df.withColumn('h3_9', index_shape('geometry', 'resolution'))
>>> df.show()
+----------------------+----------+------------------------------------+
|              geometry|resolution|                                h3_9|
+----------------------+----------+------------------------------------+
| { "type": "MultiP... |         9| [8944d551077ffff, 8944d551073ffff] |
+----------------------+----------+------------------------------------+

Optionally, add another column h3_9_geometry for the GeoJSON representation of each cell in the h3_9 column to easily map the result alongside your original input geometry:

>>> df = df.withColumn('h3_9_geometry', h3_pyspark.h3_set_to_multi_polygon(F.col('h3_9'), F.lit(True)))

View Live Map on GitHub

Result

Buffers

k_ring_distinct(cells: Column, distance: Column)

Takes in an array of input cells, perform a k-ring operation on each cell, and return the distinct set of output cells.

The schema of the output column will be T.ArrayType(T.StringType()), where each value in the array is an H3 cell.

Since we know the edge length & diameter (2 * edge length) of each H3 cell resolution, we can use this to efficiently generate a "buffered" index of our input geometry (useful for operations such as distance joins):

>>> from pyspark.sql import SparkSession, functions as F
>>> from h3_pyspark.indexing import index_shape
>>> from h3_pyspark.traversal import k_ring_distinct
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> df = spark.createDataFrame([{
        'geometry': '{ "type": "MultiPolygon", "coordinates": [ [ [ [ -80.79442262649536, 32.13522895845023 ], [ -80.79298496246338, 32.13522895845023 ], [ -80.79298496246338, 32.13602844594619 ], [ -80.79442262649536, 32.13602844594619 ], [ -80.79442262649536, 32.13522895845023 ] ] ], [ [ [ -80.7923412322998, 32.1330848437511 ], [ -80.79073190689087, 32.1330848437511 ], [ -80.79073190689087, 32.13375715632646 ], [ -80.7923412322998, 32.13375715632646 ], [ -80.7923412322998, 32.1330848437511 ] ] ] ] }',

        'resolution': 9
    }])
>>>
>>> df = df.withColumn('h3_9', index_shape('geometry', 'resolution'))
>>> df = df.withColumn('h3_9_buffer', k_ring_distinct('h3_9', 1))
>>> df.show()
+--------------------+----------+--------------------+--------------------+
|            geometry|resolution|                h3_9|         h3_9_buffer|
+--------------------+----------+--------------------+--------------------+
|{ "type": "MultiP...|         9|[8944d551077ffff,...|[8944d551073ffff,...|
+--------------------+----------+--------------------+--------------------+

View Live Map on GitHub

Result

Spatial Joins

Once we have an indexed version of our geometries, we can easily join on the string column in H3 to get a set of pair candidates:

>>> from pyspark.sql import SparkSession, functions as F
>>> from h3_pyspark.indexing import index_shape
>>> spark = SparkSession.builder.getOrCreate()
>>>
>>> left = spark.createDataFrame([{
        'left_id': 'left_point',
        'left_geometry': '{ "type": "Point", "coordinates": [ -80.79527020454407, 32.132884966083935 ] }',
    }])
>>> right = spark.createDataFrame([{
        'right_id': 'right_polygon',
        'right_geometry': '{ "type": "Polygon", "coordinates": [ [ [ -80.80022692680359, 32.12864200501338 ], [ -80.79224467277527, 32.12864200501338 ], [ -80.79224467277527, 32.13378441213715 ], [ -80.80022692680359, 32.13378441213715 ], [ -80.80022692680359, 32.12864200501338 ] ] ] }',
    }])
>>>
>>> left = left.withColumn('h3_9', index_shape('left_geometry', F.lit(9)))
>>> right = right.withColumn('h3_9', index_shape('right_geometry', F.lit(9)))
>>>
>>> left = left.withColumn('h3_9', F.explode('h3_9'))
>>> right = right.withColumn('h3_9', F.explode('h3_9'))
>>>
>>> joined = left.join(right, on='h3_9', how='inner')
>>> joined.show()
+---------------+--------------------+----------+--------------------+-------------+
|           h3_9|       left_geometry|   left_id|      right_geometry|     right_id|
+---------------+--------------------+----------+--------------------+-------------+
|8944d55100fffff|{ "type": "Point"...|left_point|{ "type": "Polygo...|right_polygon|
+---------------+--------------------+----------+--------------------+-------------+

You can combine this technique with a Buffer to do a Distance Join.

⚠️ Warning ⚠️: The outputs of an H3 join are approximate – all resulting geometry pairs should be considered intersection candidates rather than definitely intersecting. Pairing a join here with a subsequent distance calculation (distance = 0 = intersecting) or intersects can make this calculation exact. Shapely is a popular library with a well-documented distance function which can be easily wrapped in a UDF:

from pyspark.sql import functions as F, types as T
from shapely import geometry
import json

@F.udf(T.DoubleType())
def distance(geometry1, geometry2):
    geometry1 = json.loads(geometry1)
    geometry1 = geometry.shape(geometry1)
    geometry2 = json.loads(geometry2)
    geometry2 = geometry.shape(geometry2)
    return geometry1.distance(geometry2)

After a spatial join (detailed above), you can filter to only directly intersecting geometries:

>>> joined = joined.withColumn('distance', distance(F.col('left_geometry'), F.col('right_geometry')))
>>> joined = joined.filter(F.col('distance') == 0)
>>> joined.show()
+---------------+--------------------+----------+--------------------+-------------+--------+
|           h3_9|       left_geometry|   left_id|      right_geometry|     right_id|distance|
+---------------+--------------------+----------+--------------------+-------------+--------+
|8944d55100fffff|{ "type": "Point"...|left_point|{ "type": "Polygo...|right_polygon|     0.0|
+---------------+--------------------+----------+--------------------+-------------+--------+

View Live Map on GitHub

Result

Publishing New Versions

  1. Bump version in setup.cfg

  2. Publish to PyPi

     git clean -fdx
     python3 -m build
     python3 -m twine upload --repository pypi dist/*
    
  3. Create a new tag & release w/ version x.x.x and name h3-pyspark-x.x.x in GitHub

  4. Publish to conda-forge:

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc