
Security News
vlt Launches "reproduce": A New Tool Challenging the Limits of Package Provenance
vlt's new "reproduce" tool verifies npm packages against their source code, outperforming traditional provenance adoption in the JavaScript ecosystem.
llama-index-llms-openvino
Advanced tools
To install the required packages, run:
%pip install llama-index-llms-openvino transformers huggingface_hub
!pip install llama-index
You will need functions to convert messages and completions into prompts:
from llama_index.llms.openvino import OpenVINOLLM
def messages_to_prompt(messages):
prompt = ""
for message in messages:
if message.role == "system":
prompt += f"<|system|>\n{message.content}</s>\n"
elif message.role == "user":
prompt += f"<|user|>\n{message.content}</s>\n"
elif message.role == "assistant":
prompt += f"<|assistant|>\n{message.content}</s>\n"
# Ensure we start with a system prompt, insert blank if needed
if not prompt.startswith("<|system|>\n"):
prompt = "<|system|>\n</s>\n" + prompt
# Add final assistant prompt
prompt = prompt + "<|assistant|>\n"
return prompt
def completion_to_prompt(completion):
return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"
Models can be loaded by specifying parameters using the OpenVINOLLM
method. If you have an Intel GPU, specify device_map="gpu"
to run inference on it:
ov_config = {
"PERFORMANCE_HINT": "LATENCY",
"NUM_STREAMS": "1",
"CACHE_DIR": "",
}
ov_llm = OpenVINOLLM(
model_id_or_path="HuggingFaceH4/zephyr-7b-beta",
context_window=3900,
max_new_tokens=256,
model_kwargs={"ov_config": ov_config},
generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
device_map="cpu",
)
response = ov_llm.complete("What is the meaning of life?")
print(str(response))
Export your model to the OpenVINO IR format using the CLI and load it from a local folder. It’s recommended to apply 8 or 4-bit weight quantization to reduce inference latency and model footprint:
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta ov_model_dir
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta --weight-format int8 ov_model_dir
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta --weight-format int4 ov_model_dir
You can then load the model from the specified directory:
ov_llm = OpenVINOLLM(
model_id_or_path="ov_model_dir",
context_window=3900,
max_new_tokens=256,
model_kwargs={"ov_config": ov_config},
generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
device_map="gpu",
)
You can get additional inference speed improvements with dynamic quantization of activations and KV-cache quantization. Enable these options with ov_config
as follows:
ov_config = {
"KV_CACHE_PRECISION": "u8",
"DYNAMIC_QUANTIZATION_GROUP_SIZE": "32",
"PERFORMANCE_HINT": "LATENCY",
"NUM_STREAMS": "1",
"CACHE_DIR": "",
}
To use the streaming capabilities, you can use the stream_complete
and stream_chat
methods:
stream_complete
response = ov_llm.stream_complete("Who is Paul Graham?")
for r in response:
print(r.delta, end="")
stream_chat
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = ov_llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
FAQs
llama-index llms openvino integration
We found that llama-index-llms-openvino demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
vlt's new "reproduce" tool verifies npm packages against their source code, outperforming traditional provenance adoption in the JavaScript ecosystem.
Research
Security News
Socket researchers uncovered a malicious PyPI package exploiting Deezer’s API to enable coordinated music piracy through API abuse and C2 server control.
Research
The Socket Research Team discovered a malicious npm package, '@ton-wallet/create', stealing cryptocurrency wallet keys from developers and users in the TON ecosystem.