Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

optimistix

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

optimistix

Nonlinear optimisation in JAX and Equinox.

  • 0.0.9
  • PyPI
  • Socket score

Maintainers
1

Optimistix

Optimistix is a JAX library for nonlinear solvers: root finding, minimisation, fixed points, and least squares.

Features include:

  • interoperable solvers: e.g. autoconvert root find problems to least squares problems, then solve using a minimisation algorithm.
  • modular optimisers: e.g. use a BFGS quadratic bowl with a dogleg descent path with a trust region update.
  • using a PyTree as the state.
  • fast compilation and runtimes.
  • interoperability with Optax.
  • all the benefits of working with JAX: autodiff, autoparallelism, GPU/TPU support etc.

Installation

pip install optimistix

Requires Python 3.9+ and JAX 0.4.14+ and Equinox 0.11.0+.

Documentation

Available at https://docs.kidger.site/optimistix.

Quick example

import jax.numpy as jnp
import optimistix as optx

# Let's solve the ODE dy/dt=tanh(y(t)) with the implicit Euler method.
# We need to find y1 s.t. y1 = y0 + tanh(y1)dt.

y0 = jnp.array(1.)
dt = jnp.array(0.1)

def fn(y, args):
    return y0 + jnp.tanh(y) * dt

solver = optx.Newton(rtol=1e-5, atol=1e-5)
sol = optx.fixed_point(fn, solver, y0)
y1 = sol.value  # satisfies y1 == fn(y1)

Citation

If you found this library to be useful in academic work, then please cite: (arXiv link)

@article{optimistix2024,
    title={Optimistix: modular optimisation in JAX and Equinox},
    author={Jason Rader and Terry Lyons and Patrick Kidger},
    journal={arXiv:2402.09983},
    year={2024},
}

See also: other libraries in the JAX ecosystem

Always useful
Equinox: neural networks and everything not already in core JAX!
jaxtyping: type annotations for shape/dtype of arrays.

Deep learning
Optax: first-order gradient (SGD, Adam, ...) optimisers.
Orbax: checkpointing (async/multi-host/multi-device).
Levanter: scalable+reliable training of foundation models (e.g. LLMs).

Scientific computing
Diffrax: numerical differential equation solvers.
Lineax: linear solvers.
BlackJAX: probabilistic+Bayesian sampling.
sympy2jax: SymPy<->JAX conversion; train symbolic expressions via gradient descent.
PySR: symbolic regression. (Non-JAX honourable mention!)

Awesome JAX
Awesome JAX: a longer list of other JAX projects.

Credit

Optimistix was primarily built by Jason Rader (@packquickly): Twitter; GitHub; Website.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc