Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pydbr

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pydbr

Databricks client SDK with command line client for Databricks REST APIs

  • 0.0.7
  • PyPI
  • Socket score

Maintainers
1

pydbr

Databricks client SDK for Python with command line interface for Databricks REST APIs.

{:toc}

Introduction

Pydbr (short of Python-Databricks) package provides python SDK for Databricks REST API:

  • dbfs
  • workspace
  • jobs
  • runs

The package also comes with a useful CLI which might be very helpful in automation.

Installation

$ pip install pydbr

Databricks CLI

Databricks command line client provides convenient way to interact with Databricks cluster at the command line. A very popular use of such approach in in automation tasks, like DevOps pipelines or third party workflow managers.

You can call the Databricks CLI using convenient shell command pydbr:

$ pydbr --help

or using python module:

$ python -m pydbr.cli --help

To connect to the Databricks cluster, you can supply arguments at the command line:

  • --bearer-token
  • --url
  • --cluster-id

Alternatively, you can define environment variables. Command line arguments take precedence.

export DATABRICKS_URL='https://westeurope.azuredatabricks.net/'
export DATABRICKS_BEARER_TOKEN='dapixyz89u9ufsdfd0'
export DATABRICKS_CLUSTER_ID='1234-456778-abc234'
export DATABRICKS_ORG_ID='87287878293983984'

DBFS

List DBFS items
# List items on DBFS
pydbr dbfs ls --json-indent 3 FileStore/movielens
[
   {
      "path": "/FileStore/movielens/ml-latest-small",
      "is_dir": true,
      "file_size": 0,
      "is_file": false,
      "human_size": "0 B"
   }
]
Download file from DBFS
# Download a file and print to STDOUT
pydbr dbfs get ml-latest-small/movies.csv
Download directory from DBFS
# Download recursively entire directory and store locally
pydbr dbfs get -o ml-local ml-latest-small

Workspace

Databricks workspace contains notebooks and other items.

List workspace
####################
# List workspace
# Default path is root - '/'
$ pydbr workspace ls
# auto-add leading '/'
$ pydbr workspace ls 'Users'
# Space-indentend json output with number of spaces
$ pydbr workspace --json-indent 4 ls
# Custom indent string
$ pydbr workspace ls --json-indent='>'
Export items from Databricks workspace
#####################
# Export workspace items
# Export everything in source format using defaults: format=SOURCE, path=/
pydbr workspace export -o ./.dev/export
# Export everything in DBC format
pydbr workspace export -f DBC -o ./.dev/export.
# When path is folder, export is recursive
pydbr workspace export -o ./.dev/export-utils 'Utils'
# Export single ITEM
pydbr workspace export -o ./.dev/GetML 'Utils/Download MovieLens.py'

Runs

This command group implements the jobs/runs Databricks REST API.

Submit a notebook

Implements: https://docs.databricks.com/dev-tools/api/latest/jobs.html#runs-submit

$ pydbr runs submit "Utils/Download MovieLens"
{"run_id": 4}

You can retrieve the job information using runs get:

$ pydbr runs get 4 -i 3

If you need to pass parameters, use the --parameters or -p option and specify JSON text.

$ pydbr runs submit -p '{"run_tag":"20250103"}' "Utils/Download MovieLens"

You can refer also to parameters in JSON file:

$ pydbr runs submit -p '@params.json' "Utils/Download MovieLens"

You can use the parameters in the notebook and will also be able to see them in the run metadata:

pydbr runs get-output -i 3 8
{
   "notebook_output": {
      "result": "Downloaded files (tag: 20250103): README.txt, links.csv, movies.csv, ratings.csv, tags.csv",
      "truncated": false
   },
   "error": null,
   "metadata": {
      "job_id": 8,
      "run_id": 8,
      "creator_user_name": "your.name@gmail.com",
      "number_in_job": 1,
      "original_attempt_run_id": null,
      "state": {
         "life_cycle_state": "TERMINATED",
         "result_state": "SUCCESS",
         "state_message": ""
      },
      "schedule": null,
      "task": {
         "notebook_task": {
            "notebook_path": "/Utils/Download MovieLens",
            "base_parameters": {
               "run_tag": "20250103"
            }
         }
      },
      "cluster_spec": {
         "existing_cluster_id": "xxxx-yyyyyy-zzzzzz"
      },
      "cluster_instance": {
         "cluster_id": "xxxx-yyyyyy-zzzzzzzz",
         "spark_context_id": "8734983498349834"
      },
      "overriding_parameters": null,
      "start_time": 1592067357734,
      "setup_duration": 0,
      "execution_duration": 11000,
      "cleanup_duration": 0,
      "trigger": null,
      "run_name": "pydbr-1592067355",
      "run_page_url": "https://westeurope.azuredatabricks.net/?o=89349849834#job/8/run/1",
      "run_type": "SUBMIT_RUN"
   }
}
Get run metadata

Implements: Databricks REST runs/get

$ pydbr runs get -i 3 6
{
   "job_id": 6,
   "run_id": 6,
   "creator_user_name": "your.name@gmail.com",
   "number_in_job": 1,
   "original_attempt_run_id": null,
   "state": {
      "life_cycle_state": "TERMINATED",
      "result_state": "SUCCESS",
      "state_message": ""
   },
   "schedule": null,
   "task": {
      "notebook_task": {
         "notebook_path": "/Utils/Download MovieLens"
      }
   },
   "cluster_spec": {
      "existing_cluster_id": "xxxx-yyyyy-zzzzzz"
   },
   "cluster_instance": {
      "cluster_id": "xxxx-yyyyy-zzzzzz",
      "spark_context_id": "783487348734873873"
   },
   "overriding_parameters": null,
   "start_time": 1592062497162,
   "setup_duration": 0,
   "execution_duration": 11000,
   "cleanup_duration": 0,
   "trigger": null,
   "run_name": "pydbr-1592062494",
   "run_page_url": "https://westeurope.azuredatabricks.net/?o=398348734873487#job/6/run/1",
   "run_type": "SUBMIT_RUN"
}
List Runs

Implements: Databricks REST runs/list

$ pydbr runs ls

To get only the runs for a particular job:

# Get job with job-id=4
$ pydbr runs ls 4 -i 3
{
   "runs": [
      {
         "job_id": 4,
         "run_id": 4,
         "creator_user_name": "your.name@gmail.com",
         "number_in_job": 1,
         "original_attempt_run_id": null,
         "state": {
            "life_cycle_state": "PENDING",
            "state_message": ""
         },
         "schedule": null,
         "task": {
            "notebook_task": {
               "notebook_path": "/Utils/Download MovieLens"
            }
         },
         "cluster_spec": {
            "existing_cluster_id": "xxxxx-yyyy-zzzzzzz"
         },
         "cluster_instance": {
            "cluster_id": "xxxxx-yyyy-zzzzzzz"
         },
         "overriding_parameters": null,
         "start_time": 1592058826123,
         "setup_duration": 0,
         "execution_duration": 0,
         "cleanup_duration": 0,
         "trigger": null,
         "run_name": "pydbr-1592058823",
         "run_page_url": "https://westeurope.azuredatabricks.net/?o=abcdefghasdf#job/4/run/1",
         "run_type": "SUBMIT_RUN"
      }
   ],
   "has_more": false
}
Export run

Implements: Databricks REST runs/export

$ pydbr runs export --content-only 4 > .dev/run-view.html
Get run output

Implements: Databricks REST runs/get-output

$ pydbr runs get-output -i 3 6
{
   "notebook_output": {
      "result": "Downloaded files: README.txt, links.csv, movies.csv, ratings.csv, tags.csv",
      "truncated": false
   },
   "error": null,
   "metadata": {
      "job_id": 5,
      "run_id": 5,
      "creator_user_name": "your.name@gmail.com",
      "number_in_job": 1,
      "original_attempt_run_id": null,
      "state": {
         "life_cycle_state": "TERMINATED",
         "result_state": "SUCCESS",
         "state_message": ""
      },
      "schedule": null,
      "task": {
         "notebook_task": {
            "notebook_path": "/Utils/Download MovieLens"
         }
      },
      "cluster_spec": {
         "existing_cluster_id": "xxxx-yyyyy-zzzzzzz"
      },
      "cluster_instance": {
         "cluster_id": "xxxx-yyyyy-zzzzzzz",
         "spark_context_id": "8973498743973498"
      },
      "overriding_parameters": null,
      "start_time": 1592062147101,
      "setup_duration": 1000,
      "execution_duration": 11000,
      "cleanup_duration": 0,
      "trigger": null,
      "run_name": "pydbr-1592062135",
      "run_page_url": "https://westeurope.azuredatabricks.net/?o=89798374987987#job/5/run/1",
      "run_type": "SUBMIT_RUN"
   }
}

To get only the exit output:

$ pydbr runs get-output -r 6
Downloaded files: README.txt, links.csv, movies.csv, ratings.csv, tags.csv

Python Client SDK for Databricks REST APIs

To implement your own Databricks REST API client, you can use the Python Client SDK for Databricks REST APIs.

Create Databricks connection

# Get Databricks workspace connection
dbc = pydbr.connect(
        bearer_token='dapixyzabcd09rasdf',
        url='https://westeurope.azuredatabricks.net')

DBFS

# Get list of items at path /FileStore
dbc.dbfs.ls('/FileStore')

# Check if file or directory exists
dbc.dbfs.exists('/path/to/heaven')

# Make a directory and it's parents
dbc.dbfs.mkdirs('/path/to/heaven')

# Delete a directory recusively
dbc.dbfs.rm('/path', recursive=True)

# Download file block starting 1024 with size 2048
dbc.dbfs.read('/data/movies.csv', 1024, 2048)

# Download entire file
dbc.dbfs.read_all('/data/movies.csv')

Databricks workspace

# List root workspace directory
dbc.workspace.ls('/')

# Check if workspace item exists
dbc.workspace.exists('/explore')

# Check if workspace item is a directory
dbc.workspace.is_directory('/')

# Export notebook in default (SOURCE) format
dbc.workspace.export('/my_notebook')

# Export notebook in HTML format
dbc.workspace.export('/my_notebook', 'HTML')

Build and publish

pip install wheel twine
python setup.py sdist bdist_wheel
python -m twine upload dist/*

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc