Call predict(data)
to predict new values that can be in different types, e.g. dict, list, json, ndarray of NumPy, Series or DataFrame of Pandas.
>>> model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})
{'probability_Iris-setosa': 1.0, 'probability_Iris-versicolor': 0.0, 'probability': 1.0, 'predicted_class': 'Iris-setosa', 'probability_Iris-virginica': 0.0, 'node_id': '1'}
NOTE: the order of values must match the input names, and the order of results always matches the output names.
>>> model.inputNames
['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
>>> model.predict([5.1, 3.5, 1.4, 0.2])
['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1']
>>> model.outputNames
['predicted_class', 'probability', 'probability_Iris-setosa', 'probability_Iris-versicolor', 'probability_Iris-virginica', 'node_id']
>>> model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]')
[{"probability":1.0,"probability_Iris-versicolor":0.0,"probability_Iris-setosa":1.0,"probability_Iris-virginica":0.0,"predicted_class":"Iris-setosa","node_id":"1"}]
>>> model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}')
{"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"]]}
data
in ndarray of NumPy:
NOTE: as the list above, the order of ndarray values must match the input names, and the order of results always matches the output names.
>>> import numpy as np
>>> model.predict(np.array([5.1, 3.5, 1.4, 0.2]))
['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1']
>>>
>>> model.predict(np.array([[5.1, 3.5, 1.4, 0.2], [7, 3.2, 4.7, 1.4]]))
[['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1'], ['Iris-versicolor', 0.9074074074074074, 0.0, 0.9074074074074074, 0.09259259259259259, '3']]
data
in Series of Pandas:
>>> import pandas as pd
>>> model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}))
node_id 1
predicted_class Iris-setosa
probability 1
probability_Iris-setosa 1
probability_Iris-versicolor 0
probability_Iris-virginica 0
Name: 0, dtype: object
data
in DataFrame of Pandas:
>>> import pandas as pd
>>> data = pd.read_csv('Iris.csv')
>>> model.predict(data)
node_id predicted_class probability probability_Iris-setosa probability_Iris-versicolor probability_Iris-virginica
0 1 Iris-setosa 1.000000 1.0 0.000000 0.000000
1 1 Iris-setosa 1.000000 1.0 0.000000 0.000000
2 1 Iris-setosa 1.000000 1.0 0.000000 0.000000
3 1 Iris-setosa 1.000000 1.0 0.000000 0.000000
4 1 Iris-setosa 1.000000 1.0 0.000000 0.000000
.. ... ... ... ... ... ...
145 10 Iris-virginica 0.978261 0.0 0.021739 0.978261
146 10 Iris-virginica 0.978261 0.0 0.021739 0.978261
147 10 Iris-virginica 0.978261 0.0 0.021739 0.978261
148 10 Iris-virginica 0.978261 0.0 0.021739 0.978261
149 10 Iris-virginica 0.978261 0.0 0.021739 0.978261