
Security News
vlt Launches "reproduce": A New Tool Challenging the Limits of Package Provenance
vlt's new "reproduce" tool verifies npm packages against their source code, outperforming traditional provenance adoption in the JavaScript ecosystem.
Allows to access various Sea Level Databases via python.
To install the package use the command:
pip install sealev
After the installation, it is possible to use the package in python:
python
Once you are in python environment you can give the following collamnds
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
#
# get the list of available database sources:
dbs=sl.getDBs()
#
for db in dbs:
print(db)
You will get a list of all the database that you can query.
You can select one specific database, i.e. DART, and requst the list of available devices:
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
darts=sl.getDevs('DART')
#
for dart in darts:
print(dart['id'],dart['location'],format(dart['lat'])+'/'+format(dart['lon']))
#
The response will be:
21413 Station 21413 - SOUTHEAST TOKYO - 700NM ESE of Tokyo, JP 30.492/152.085
21414 Station 21414 - AMCHITKA - 170 NM South of Amchitka, AK 48.97/178.165
21415 Station 21415 - ATTU - 175 NM South of Attu, AK 50.12/171.867
21416 Station 21416 - KAMCHATKA PENINSULA - 240NM SE of Kamchatka Peninsula, RU 48.12/163.43
21418 Station 21418 - NORTHEAST TOKYO - 450 NM NE of Tokyo, JP 38.73/148.8
...
56003 Station 56003 - Indian Ocean 2 - 630km NNE of Dampier -15.019/118.073
The response if a list of devices; each device is a dictionary composed of:
the keyword 'id' contains the reference identifier to retrieve the level data.
Suppose you want to retrieve the level values of one specific device, such as 21414 (Station 21414 - AMCHITKA - 170 NM South of Amchitka), you can give the following command:
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
values=sl.getLevel('DART','21414')
for j in range(len(values['x'])):
print(values['x'][j],values['y'][j])
The response of the example above is a list of data if the device has recent recorded data:
2024-10-02 00:00:00 5442.868
2024-10-02 00:15:00 5442.874
2024-10-02 00:30:00 5442.882
2024-10-02 00:45:00 5442.891
2024-10-02 01:00:00 5442.897
...
You can retrieve data from the past adding the keyword tmin, tmax in the getLevel call. Example
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
values=sl.getLevel('GLOSS @vliz','mnza','2022-09-19 00:00:00','2022-09-21 00:00:00')
for j in range(len(values['x'])):
print(values['x'][j],values['y'][j])
The example above retrieves and print the data related to the Tsunami event in Mexico.
The response is a dctionary containing the following keys:
import matplotlib.pyplot as plt
plt.plot(values['x'],values['y'])
plt.xlabel('Date/Time')
plt.ylabel('Level (m)')
plt.title('M7.6 MEXICO, 2022-09-19 18:05:00')
plt.show()
The following plot would be generated:
As another example, let's show the Hurricane Helene 2024 at Clearwater Beach (USA)
from sealev.sldb import seaLevelDB
import matplotlib.pyplot as plt
sl=seaLevelDB()
values=sl.getLevel('GLOSS @vliz','cwfl','2024-09-24 00:00:00','2024-09-29 00:00:00')
plt.plot(values['x'],values['y'])
plt.xlabel('Date/Time')
plt.ylabel('Level (m)')
plt.title('Clearwater Beach (FL), Cyclone Helene-24')
plt.show()
the output will be:
After having retrieved the values dictionary, you can export in a csv file. Example
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
values=sl.getLevel('GLOSS @vliz','mnza','2022-09-19 00:00:00','2022-09-21 00:00:00')
sl.to_csv(values,'output.csv')
In some cases (i.e. JRC_TAD database), many other quantities are retrieved from the database in addition to the level. In these cases the available keys are many more thabn x and y, that however always eist. The other quantities can also be retrieved. The xample below collects the data of Cadiz (IDSL-06) from the JRC database and creates a plot of the battery voltage.
import matplotlib.pyplot as plt
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
#
values=sl.getLevel('JRC_TAD','IDSL-06','2024-10-03 00:00:00','2024-10-08 00:00:00')
print('List of possible quantities to plot:',values.keys())
plt.plot(values['x'],values['anag3'])
plt.xlabel('Date/Time')
plt.ylabel('Battery voltage (volt)')
plt.title('Cadiz device IDSL-06')
plt.show()
The output plot is the folllowing:
To search a device using the name or the id as keyword use the search command:
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
details=sl.search('NOAA TC','Clearwater')
print('detail=',detail)
the reply will be:
detail= [{'location': 'Clearwater Beach', 'id': '8726724', 'lat': 27.978333, 'lon': -82.831667, 'country': '', 'group': ''}]
PD is a list of (lat,lon,distKM) Suppose you want to search all the devices within 300 km from the point lat=26.131667, lon=-81.8075. PD=(26.131667, -81.8075, 300)
from sealev import seaLevelDB
sl=seaLevelDB()
db='NOAA TC'
listDevs=sl.search(db,pointDistKM=(26.131667, -81.8075, 300))
for dev in listDevs:
print(dev['id'],dev['location'])
the response will be:
8722670 Lake Worth Pier, Atlantic Ocean
8722956 South Port Everglades
8723214 Virginia Key
8723970 Vaca Key, Florida Bay
8724580 Key West
8725114 Naples Bay, North
8725520 Fort Myers
8726384 Port Manatee
8726520 St. Petersburg
8726607 Old Port Tampa
8726674 East Bay
8726724 Clearwater Beach
This command will perform the plot as shown above.
from sealev.sldb import seaLevelDB
sl=seaLevelDB()
details=sl.search('NOAA TC','Clearwater')
id=details[0]['id']
sl.plot('NOAA TC',id,'2024-10-05 00:00:00','2024-10-11 00:00:00')
If you want to see where the list of devices is located you can use the mapDevs option. Example
from sealev import seaLevelDB
sl=seaLevelDB()
db='NOAA TC'
#create a list of devices as shown in the search example above
listDevs=sl.search(db,pointDistKM=(26.131667, -81.8075, 300))
# map the devices
sl.mapDevs(listDevs)
This script will provide the following image:
FAQs
Se Level DBs
We found that sealev demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
vlt's new "reproduce" tool verifies npm packages against their source code, outperforming traditional provenance adoption in the JavaScript ecosystem.
Research
Security News
Socket researchers uncovered a malicious PyPI package exploiting Deezer’s API to enable coordinated music piracy through API abuse and C2 server control.
Research
The Socket Research Team discovered a malicious npm package, '@ton-wallet/create', stealing cryptocurrency wallet keys from developers and users in the TON ecosystem.