The Python SomaData
Package from Somalogic, Inc.

Overview
This document accompanies the Python package somadata
, which loads the SomaLogic, Inc. structured text data file called an *.adat
. The somadata.Adat
object is an extension of the pandas.DataFrame
class. The package provides auxiliary functions for extracting relevant information from the ADAT object once in the Python environment. Basic familiarity with the Python environment is assumed, as is the ability to install contributed packages from the Python Package Installer (pip)
Table of Contents:
- Installation
- Basic Use
- Reading ADAT text files
- Wrangling Data
- Adding Metadata
- Slicing Data
- SomaScan Version Lifting
- Writing an ADAT text file
- Example Data Analysis
Installation
The easiest way to install SomaData
is to install directly from PyPI
PIP:
pip install SomaData
Alternatively one can install from the GitHub repository.
GitHub:
pip install git+https://github.com/SomaLogic/Canopy.git
Alternatively, if you wish to develop or change the source code, you may clone the repository and install manually via:
git clone https://github.com/SomaLogic/Canopy.git
pip install -e ./somadata
Dependencies
Python >=3.8
is required to install somadata
. The following package dependencies are installed on a pip install
:
pandas >= 1.1.0
numpy >= 1.19.1
return to top
Basics
Upon installation, load somadata
as normal:
return to top
import somadata
For a traversable index of the library:
help(somadata)
Help on package somadata:
NAME
somadata
PACKAGE CONTENTS
adat
annotations
base (package)
data (package)
errors
io (package)
tools (package)
FILE
/Users/tjohnson/code/repos/SomaData/somadata/__init__.py
Internal Objects
The somadata
package comes with one internal object available to users to run canned examples (or analyses). It can be accessed by perform the import:
from somadata.data.example_data import example_data
Main Features (I/O)
- Loading data (Import)
- Import a text file in the
*.adat
format into a Python
session as an adat
object.
- Wrangling data (Manipulation)
- Subset, reorder, and list various fields of an
adat
object.
- Exporting data (Output)
- Write out an
adat
object as a *.adat
text file.
Loading an ADAT
return to top
Loading the sample file from within the somadata library via its path
adat = somadata.read_adat('./somadata/data/example_data.adat')
type(adat)
somadata.adat.Adat
adat.shape
(192, 5284)
adat.columns
MultiIndex([( '10000-28', '3', 'SL019233', ...),
( '10001-7', '3', 'SL002564', ...),
( '10003-15', '3', 'SL019245', ...),
( '10006-25', '3', 'SL019228', ...),
( '10008-43', '3', 'SL019234', ...),
( '10011-65', '3', 'SL019246', ...),
( '10012-5', '3', 'SL014669', ...),
( '10013-34', '3', 'SL025418', ...),
( '10014-31', '3', 'SL007803', ...),
('10015-119', '3', 'SL014924', ...),
...
( '9981-18', '3', 'SL018293', ...),
( '9983-97', '3', 'SL019202', ...),
( '9984-12', '3', 'SL019205', ...),
( '9986-14', '3', 'SL005356', ...),
( '9989-12', '3', 'SL019194', ...),
( '9993-11', '3', 'SL019212', ...),
( '9994-217', '3', 'SL019217', ...),
( '9995-6', '3', 'SL013164', ...),
( '9997-12', '3', 'SL019215', ...),
( '9999-1', '3', 'SL019231', ...)],
names=['SeqId', 'SeqIdVersion', 'SomaId', 'TargetFullName', 'Target', 'UniProt', 'EntrezGeneID', 'EntrezGeneSymbol', 'Organism', 'Units', 'Type', 'Dilution', 'PlateScale_Reference', 'CalReference', 'Cal_Example_Adat_Set001', 'ColCheck', 'CalQcRatio_Example_Adat_Set001_170255', 'QcReference_170255', 'Cal_Example_Adat_Set002', 'CalQcRatio_Example_Adat_Set002_170255'], length=5284)
from IPython.display import HTML
HTML(adat.iloc[:5,:5].to_html())
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SeqId | 10000-28 | 10001-7 | 10003-15 | 10006-25 | 10008-43 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SeqIdVersion | 3 | 3 | 3 | 3 | 3 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SomaId | SL019233 | SL002564 | SL019245 | SL019228 | SL019234 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TargetFullName | Beta-crystallin B2 | RAF proto-oncogene serine/threonine-protein kinase | Zinc finger protein 41 | ETS domain-containing protein Elk-1 | Guanylyl cyclase-activating protein 1 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Target | CRBB2 | c-Raf | ZNF41 | ELK1 | GUC1A |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UniProt | P43320 | P04049 | P51814 | P19419 | P43080 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EntrezGeneID | 1415 | 5894 | 7592 | 2002 | 2978 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EntrezGeneSymbol | CRYBB2 | RAF1 | ZNF41 | ELK1 | GUCA1A |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Organism | Human | Human | Human | Human | Human |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Units | RFU | RFU | RFU | RFU | RFU |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Type | Protein | Protein | Protein | Protein | Protein |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dilution | 20 | 20 | 0.5 | 20 | 20 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PlateScale_Reference | 687.4 | 227.8 | 126.9 | 634.2 | 585.0 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalReference | 687.4 | 227.8 | 126.9 | 634.2 | 585.0 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cal_Example_Adat_Set001 | 1.01252025 | 1.01605709 | 0.95056180 | 0.99607350 | 0.94051447 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ColCheck | PASS | PASS | PASS | PASS | PASS |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalQcRatio_Example_Adat_Set001_170255 | 1.008 | 0.970 | 1.046 | 1.042 | 1.036 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | QcReference_170255 | 505.4 | 223.9 | 119.6 | 667.2 | 587.5 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cal_Example_Adat_Set002 | 1.01476233 | 1.03686846 | 1.15258856 | 0.93581231 | 0.96201283 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalQcRatio_Example_Adat_Set002_170255 | 1.067 | 1.007 | 0.981 | 1.026 | 0.998 |
---|
PlateId | PlateRunDate | ScannerID | PlatePosition | SlideId | Subarray | SampleId | SampleType | PercentDilution | SampleMatrix | Barcode | Barcode2d | SampleName | SampleNotes | AliquotingNotes | SampleDescription | AssayNotes | TimePoint | ExtIdentifier | SsfExtId | SampleGroup | SiteId | TubeUniqueID | CLI | HybControlNormScale | RowCheck | NormScale_20 | NormScale_0_005 | NormScale_0_5 | ANMLFractionUsed_20 | ANMLFractionUsed_0_005 | ANMLFractionUsed_0_5 | Age | Sex | | | | | |
---|
Example Adat Set001 | 2020-06-18 | SG15214400 | H9 | 258495800012 | 3 | 1 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.98185998 | PASS | 1.03693580 | 0.85701624 | 0.77717491 | 0.914 | 0.869 | 0.903 | 76 | F | 476.5 | 310.1 | 100.3 | 602.8 | 561.8 |
---|
H8 | 258495800004 | 7 | 2 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.96671829 | PASS | 0.96022505 | 0.84858420 | 0.85201953 | 0.937 | 0.956 | 0.973 | 55 | F | 474.4 | 293.5 | 101.8 | 561.9 | 541.9 |
---|
H7 | 258495800010 | 8 | 3 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 1.00193072 | PASS | 0.98411617 | 1.03270156 | 0.91519153 | 0.907 | 0.919 | 0.915 | 47 | M | 415.6 | 299.6 | 3030.1 | 563.9 | 423.9 |
---|
H6 | 258495800003 | 4 | 4 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94017961 | PASS | 1.07839878 | 0.94626841 | 0.91246731 | 0.934 | 0.919 | 0.912 | 37 | M | 442.6 | 247.9 | 112.9 | 563.7 | 469.8 |
---|
H5 | 258495800009 | 4 | 5 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94621098 | PASS | 0.84679446 | 0.92904553 | 0.77413056 | 0.707 | 0.894 | 0.708 | 71 | F | 465.7 | 710.7 | 95.9 | 791.0 | 443.5 |
---|
You may also access the dict header metadata via:
adat.header_metadata
{'!AdatId': 'GID-1234-56-789-abcdef',
'!Version': '1.2',
'!AssayType': 'PharmaServices',
'!AssayVersion': 'V4',
'!AssayRobot': 'Fluent 1 L-307',
'!Legal': 'Experiment details and data have been processed to protect Personally Identifiable Information (PII) and comply with existing privacy laws.',
'!CreatedBy': 'PharmaServices',
'!CreatedDate': '2020-07-24',
'!EnteredBy': 'Technician1',
'!ExpDate': '2020-06-18, 2020-07-20',
'!GeneratedBy': 'Px (Build: : ), Canopy_0.1.1',
'!RunNotes': "2 columns ('Age' and 'Sex') have been added to this ADAT. Age has been randomly increased or decreased by 1-2 years to protect patient information",
'!ProcessSteps': 'Raw RFU, Hyb Normalization, medNormInt (SampleId), plateScale, Calibration, anmlQC, qcCheck, anmlSMP',
'!ProteinEffectiveDate': '2019-08-06',
'!StudyMatrix': 'EDTA Plasma',
'!PlateType': '',
'!LabLocation': 'SLUS',
'!StudyOrganism': '',
'!Title': 'Example Adat Set001, Example Adat Set002',
'!AssaySite': 'SW',
'!CalibratorId': '170261',
'!ReportConfig': {'analysisSteps': [{'stepType': 'hybNorm',
'referenceSource': 'intraplate',
'includeSampleTypes': ['QC', 'Calibrator', 'Buffer']},
{'stepName': 'medNormInt',
'stepType': 'medNorm',
'includeSampleTypes': ['Calibrator', 'Buffer'],
'referenceSource': 'intraplate',
'referenceFields': ['SampleId']},
{'stepType': 'plateScale',
'referenceSource': 'Reference_v4_Plasma_Calibrator_170261'},
{'stepType': 'calibrate',
'referenceSource': 'Reference_v4_Plasma_Calibrator_170261'},
{'stepName': 'anmlQC',
'stepType': 'ANML',
'effectSizeCutoff': 2.0,
'minFractionUsed': 0.3,
'includeSampleTypes': ['QC'],
'referenceSource': 'Reference_v4_Plasma_ANML'},
{'stepType': 'qcCheck',
'QCReferenceSource': 'Reference_v4_Plasma_QC_ANML_170255',
'tailsCriteriaLower': 0.8,
'tailsCriteriaUpper': 1.2,
'tailThreshold': 15.0,
'QCAdditionalReferenceSources': ['Reference_v4_Plasma_QC_ANML_170259',
'Reference_v4_Plasma_QC_ANML_170260'],
'prenormalized': True},
{'stepName': 'anmlSMP',
'stepType': 'ANML',
'effectSizeCutoff': 2.0,
'minFractionUsed': 0.3,
'includeSampleTypes': ['Sample'],
'referenceSource': 'Reference_v4_Plasma_ANML'}],
'qualityReports': ['SQS Report'],
'filter': {'proteinEffectiveDate': '2019-08-06'}},
'HybNormReference': 'intraplate',
'MedNormReference': 'intraplate',
'NormalizationAlgorithm': 'ANML',
'PlateScale_ReferenceSource': 'Reference_v4_Plasma_Calibrator_170261',
'PlateScale_Scalar_Example_Adat_Set001': '1.08091554',
'PlateScale_PassFlag_Example_Adat_Set001': 'PASS',
'CalibrationReference': 'Reference_v4_Plasma_Calibrator_170261',
'CalPlateTailPercent_Example_Adat_Set001': '0.1',
'PlateTailPercent_Example_Adat_Set001': '1.2',
'PlateTailTest_Example_Adat_Set001': 'PASS',
'PlateScale_Scalar_Example_Adat_Set002': '1.09915270',
'PlateScale_PassFlag_Example_Adat_Set002': 'PASS',
'CalPlateTailPercent_Example_Adat_Set002': '2.6',
'PlateTailPercent_Example_Adat_Set002': '4.2',
'PlateTailTest_Example_Adat_Set002': 'PASS'}
SomaData's Adat object inherits the pandas printing methods which displays nicely in Jupyter Notebooks when using IPython.display.display()
.
Wrangling
Dataframe columns
Contain Feature Information
return to top
aptamer_df = adat.columns.to_frame(index=False)
type(aptamer_df)
pandas.core.frame.DataFrame
HTML(aptamer_df.head(5).to_html())
| SeqId | SeqIdVersion | SomaId | TargetFullName | Target | UniProt | EntrezGeneID | EntrezGeneSymbol | Organism | Units | Type | Dilution | PlateScale_Reference | CalReference | Cal_Example_Adat_Set001 | ColCheck | CalQcRatio_Example_Adat_Set001_170255 | QcReference_170255 | Cal_Example_Adat_Set002 | CalQcRatio_Example_Adat_Set002_170255 |
---|
0 | 10000-28 | 3 | SL019233 | Beta-crystallin B2 | CRBB2 | P43320 | 1415 | CRYBB2 | Human | RFU | Protein | 20 | 687.4 | 687.4 | 1.01252025 | PASS | 1.008 | 505.4 | 1.01476233 | 1.067 |
---|
1 | 10001-7 | 3 | SL002564 | RAF proto-oncogene serine/threonine-protein kinase | c-Raf | P04049 | 5894 | RAF1 | Human | RFU | Protein | 20 | 227.8 | 227.8 | 1.01605709 | PASS | 0.970 | 223.9 | 1.03686846 | 1.007 |
---|
2 | 10003-15 | 3 | SL019245 | Zinc finger protein 41 | ZNF41 | P51814 | 7592 | ZNF41 | Human | RFU | Protein | 0.5 | 126.9 | 126.9 | 0.95056180 | PASS | 1.046 | 119.6 | 1.15258856 | 0.981 |
---|
3 | 10006-25 | 3 | SL019228 | ETS domain-containing protein Elk-1 | ELK1 | P19419 | 2002 | ELK1 | Human | RFU | Protein | 20 | 634.2 | 634.2 | 0.99607350 | PASS | 1.042 | 667.2 | 0.93581231 | 1.026 |
---|
4 | 10008-43 | 3 | SL019234 | Guanylyl cyclase-activating protein 1 | GUC1A | P43080 | 2978 | GUCA1A | Human | RFU | Protein | 20 | 585.0 | 585.0 | 0.94051447 | PASS | 1.036 | 587.5 | 0.96201283 | 0.998 |
---|
Accessing feature data
The .to_frame()
method creates a lookup table that links the feature names in the adat
object to the annotation data in columns
:
col_df = adat.columns.to_frame(index=False)
type(col_df)
pandas.core.frame.DataFrame
HTML(col_df.head(5).to_html())
| SeqId | SeqIdVersion | SomaId | TargetFullName | Target | UniProt | EntrezGeneID | EntrezGeneSymbol | Organism | Units | Type | Dilution | PlateScale_Reference | CalReference | Cal_Example_Adat_Set001 | ColCheck | CalQcRatio_Example_Adat_Set001_170255 | QcReference_170255 | Cal_Example_Adat_Set002 | CalQcRatio_Example_Adat_Set002_170255 |
---|
0 | 10000-28 | 3 | SL019233 | Beta-crystallin B2 | CRBB2 | P43320 | 1415 | CRYBB2 | Human | RFU | Protein | 20 | 687.4 | 687.4 | 1.01252025 | PASS | 1.008 | 505.4 | 1.01476233 | 1.067 |
---|
1 | 10001-7 | 3 | SL002564 | RAF proto-oncogene serine/threonine-protein kinase | c-Raf | P04049 | 5894 | RAF1 | Human | RFU | Protein | 20 | 227.8 | 227.8 | 1.01605709 | PASS | 0.970 | 223.9 | 1.03686846 | 1.007 |
---|
2 | 10003-15 | 3 | SL019245 | Zinc finger protein 41 | ZNF41 | P51814 | 7592 | ZNF41 | Human | RFU | Protein | 0.5 | 126.9 | 126.9 | 0.95056180 | PASS | 1.046 | 119.6 | 1.15258856 | 0.981 |
---|
3 | 10006-25 | 3 | SL019228 | ETS domain-containing protein Elk-1 | ELK1 | P19419 | 2002 | ELK1 | Human | RFU | Protein | 20 | 634.2 | 634.2 | 0.99607350 | PASS | 1.042 | 667.2 | 0.93581231 | 1.026 |
---|
4 | 10008-43 | 3 | SL019234 | Guanylyl cyclase-activating protein 1 | GUC1A | P43080 | 2978 | GUCA1A | Human | RFU | Protein | 20 | 585.0 | 585.0 | 0.94051447 | PASS | 1.036 | 587.5 | 0.96201283 | 0.998 |
---|
Display features
adat.columns.get_level_values('SeqId')[:20]
Index(['10000-28', '10001-7', '10003-15', '10006-25', '10008-43', '10011-65',
'10012-5', '10013-34', '10014-31', '10015-119', '10021-1', '10022-207',
'10023-32', '10024-44', '10030-8', '10034-16', '10035-6', '10036-201',
'10037-98', '10040-63'],
dtype='object', name='SeqId')
Get # Features
adat.shape[1]
5284
Clinical Data
Dataframe index
Contains Sample Information
sample_df = adat.index.to_frame(index=False)
type(sample_df)
pandas.core.frame.DataFrame
HTML(sample_df.head(5).to_html())
| PlateId | PlateRunDate | ScannerID | PlatePosition | SlideId | Subarray | SampleId | SampleType | PercentDilution | SampleMatrix | Barcode | Barcode2d | SampleName | SampleNotes | AliquotingNotes | SampleDescription | AssayNotes | TimePoint | ExtIdentifier | SsfExtId | SampleGroup | SiteId | TubeUniqueID | CLI | HybControlNormScale | RowCheck | NormScale_20 | NormScale_0_005 | NormScale_0_5 | ANMLFractionUsed_20 | ANMLFractionUsed_0_005 | ANMLFractionUsed_0_5 | Age | Sex |
---|
0 | Example Adat Set001 | 2020-06-18 | SG15214400 | H9 | 258495800012 | 3 | 1 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.98185998 | PASS | 1.03693580 | 0.85701624 | 0.77717491 | 0.914 | 0.869 | 0.903 | 76 | F |
---|
1 | Example Adat Set001 | 2020-06-18 | SG15214400 | H8 | 258495800004 | 7 | 2 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.96671829 | PASS | 0.96022505 | 0.84858420 | 0.85201953 | 0.937 | 0.956 | 0.973 | 55 | F |
---|
2 | Example Adat Set001 | 2020-06-18 | SG15214400 | H7 | 258495800010 | 8 | 3 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 1.00193072 | PASS | 0.98411617 | 1.03270156 | 0.91519153 | 0.907 | 0.919 | 0.915 | 47 | M |
---|
3 | Example Adat Set001 | 2020-06-18 | SG15214400 | H6 | 258495800003 | 4 | 4 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94017961 | PASS | 1.07839878 | 0.94626841 | 0.91246731 | 0.934 | 0.919 | 0.912 | 37 | M |
---|
4 | Example Adat Set001 | 2020-06-18 | SG15214400 | H5 | 258495800009 | 4 | 5 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94621098 | PASS | 0.84679446 | 0.92904553 | 0.77413056 | 0.707 | 0.894 | 0.708 | 71 | F |
---|
Modifying Metadata
The Adat
index and columns are pandas.MultiIndex
objects. Several convenience functions exist to help you modify these objects. Typically, the row metadata (axis=0) represents data describing the sample or the individual from whom the sample was collected. The column metadata (axis=1) contains data regarding the SOMAmer reagent, the reagent's target and scalars applied to columns during normalization, these columns are not usually edited by the end user but can be using the same methods demonstrated on row metadata below.
return to top
Add Row Metadata
Row metadata is sample level information which could include added clinical data like age, sex or clinical measurements. The Adat class facilitates managing this data.
from itertools import cycle, islice
import pandas as pd
metadata_list = list(islice(cycle(['A', 'B', 'X', 'Y']), adat.shape[0]))
metadata_dictionary = {k:v for k, v in zip(adat.index.get_level_values('SampleId').to_list(), metadata_list)}
Add unlabeled metadata
You might do this if you know your metadata and Adat
are ordered the same way but you are not using a shared key.
return to top
new_meta_adat = adat.insert_meta(0,'GroupData', metadata_list)
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'GroupData']]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| PlateId | SampleId | GroupData |
---|
0 | Example Adat Set001 | 1 | A |
---|
1 | Example Adat Set001 | 2 | B |
---|
2 | Example Adat Set001 | 3 | X |
---|
3 | Example Adat Set001 | 4 | Y |
---|
4 | Example Adat Set001 | 5 | A |
---|
5 | Example Adat Set001 | 6 | B |
---|
6 | Example Adat Set001 | 7 | X |
---|
Add Keyed Metadata
You might have data coming in as key value pairs from another data source. In that case it is easier to insert metadata using those keys:
return to top
new_meta_adat = adat.insert_keyed_meta(0,'GroupData', 'SampleId', metadata_dictionary)
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'GroupData']]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| PlateId | SampleId | GroupData |
---|
0 | Example Adat Set001 | 1 | A |
---|
1 | Example Adat Set001 | 2 | B |
---|
2 | Example Adat Set001 | 3 | X |
---|
3 | Example Adat Set001 | 4 | Y |
---|
4 | Example Adat Set001 | 5 | A |
---|
5 | Example Adat Set001 | 6 | B |
---|
6 | Example Adat Set001 | 7 | X |
---|
Replace Metadata with Unlabeled Metadata
You might do this if you know your metadata and Adat
are ordered the same way but you are not using a shared key.
return to top
new_meta_adat = adat.replace_meta(0,'SampleName', metadata_list)
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'SampleName']]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| PlateId | SampleId | SampleName |
---|
0 | Example Adat Set001 | 1 | A |
---|
1 | Example Adat Set001 | 2 | B |
---|
2 | Example Adat Set001 | 3 | X |
---|
3 | Example Adat Set001 | 4 | Y |
---|
4 | Example Adat Set001 | 5 | A |
---|
5 | Example Adat Set001 | 6 | B |
---|
6 | Example Adat Set001 | 7 | X |
---|
Replace Metadata with Keyed Metadata
You might need to replace metadata based on another document using key-value pairs.
return to top
new_meta_adat = adat.replace_keyed_meta(0,'SampleName', metadata_dictionary, 'SampleId')
new_meta_adat.index.to_frame(index=False).loc[0:6, ['PlateId', 'SampleId', 'SampleName']]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| PlateId | SampleId | SampleName |
---|
0 | Example Adat Set001 | 1 | A |
---|
1 | Example Adat Set001 | 2 | B |
---|
2 | Example Adat Set001 | 3 | X |
---|
3 | Example Adat Set001 | 4 | Y |
---|
4 | Example Adat Set001 | 5 | A |
---|
5 | Example Adat Set001 | 6 | B |
---|
6 | Example Adat Set001 | 7 | X |
---|
Math
You may perform mathematical transformations on the feature data via apply or calling those functions and passing the entire dataframe.
import numpy as np
log10_adat = adat.apply(np.log10)
rounded_adat = adat.apply(round, args=[5,])
sqrt_adat = adat.apply(np.sqrt)
Subsetting/Slicing the Dataframe
You may extract certain subgroups of samples and/or features. SomaData augments the pandas dataframe with a number of helper functions to aid the user.
return to top
calibrator_adat = adat.pick_on_meta(axis=0, name='SampleType', values=['Calibrator'])
non_calibrator_adat = adat.exclude_on_meta(axis=0, name='SampleType', values=['Calibrator'])
target_names = adat.columns.get_level_values('Target')
mmp_names = [target for target in target_names if target.startswith('MMP')]
mmp_adat = adat.pick_on_meta(axis=1, name='Target', values=mmp_names)
mmp_adat
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead tr th {
text-align: left;
}
.dataframe thead tr:last-of-type th {
text-align: right;
}
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SeqId | 15419-15 | 2579-17 | 2788-55 | 2789-26 | 2838-53 | 4160-49 | 4496-60 | 4924-32 | 4925-54 | 5002-76 | 5268-49 | 6425-87 | 8479-4 | 9172-69 | 9719-145 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SeqIdVersion | 3 | 5 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 3 | 3 | 3 | 3 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SomaId | SL012374 | SL000527 | SL000524 | SL000525 | SL003332 | SL000124 | SL000522 | SL000521 | SL000523 | SL002646 | SL003331 | SL007616 | SL000645 | SL000526 | SL003331 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TargetFullName | Matrix metalloproteinase-20 | Matrix metalloproteinase-9 | Stromelysin-1 | Matrilysin | Matrix metalloproteinase-17 | 72 kDa type IV collagenase | Macrophage metalloelastase | Interstitial collagenase | Collagenase 3 | Matrix metalloproteinase-14 | Matrix metalloproteinase-16 | Matrix metalloproteinase-19 | Stromelysin-2 | Neutrophil collagenase | Matrix metalloproteinase-16 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Target | MMP20 | MMP-9 | MMP-3 | MMP-7 | MMP-17 | MMP-2 | MMP-12 | MMP-1 | MMP-13 | MMP-14 | MMP-16 | MMP19 | MMP-10 | MMP-8 | MMP-16 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UniProt | O60882 | P14780 | P08254 | P09237 | Q9ULZ9 | P08253 | P39900 | P03956 | P45452 | P50281 | P51512 | Q99542 | P09238 | P22894 | P51512 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EntrezGeneID | 9313 | 4318 | 4314 | 4316 | 4326 | 4313 | 4321 | 4312 | 4322 | 4323 | 4325 | 4327 | 4319 | 4317 | 4325 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EntrezGeneSymbol | MMP20 | MMP9 | MMP3 | MMP7 | MMP17 | MMP2 | MMP12 | MMP1 | MMP13 | MMP14 | MMP16 | MMP19 | MMP10 | MMP8 | MMP16 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Organism | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Units | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Type | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dilution | 20 | 0.5 | 0.5 | 20 | 20 | 0.5 | 20 | 20 | 20 | 20 | 20 | 0.5 | 20 | 20 | 20 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PlateScale_Reference | 937.5 | 19472.3 | 117.2 | 2392.9 | 1520.6 | 14888.5 | 1014.9 | 7611.5 | 376.6 | 632.1 | 565.8 | 5063.4 | 1534.0 | 1088.5 | 1166.8 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalReference | 937.5 | 19472.3 | 117.2 | 2392.9 | 1520.6 | 14888.5 | 1014.9 | 7611.5 | 376.6 | 632.1 | 565.8 | 5063.4 | 1534.0 | 1088.5 | 1166.8 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cal_Example_Adat_Set001 | 1.06947296 | 1.01957222 | 0.98404702 | 0.90131455 | 1.13783298 | 0.98961103 | 0.96180819 | 0.91162239 | 0.98689727 | 1.02497162 | 0.97906212 | 0.97843478 | 0.95061040 | 0.94709823 | 1.02243253 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ColCheck | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalQcRatio_Example_Adat_Set001_170255 | 1.132 | 1.002 | 0.893 | 1.130 | 0.955 | 0.987 | 1.014 | 1.054 | 1.023 | 0.987 | 1.024 | 1.005 | 1.023 | 1.029 | 1.003 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | QcReference_170255 | 793.4 | 10420.6 | 124.2 | 9482.5 | 1252.0 | 16044.7 | 1115.3 | 13192.8 | 394.4 | 492.1 | 559.2 | 6162.7 | 1946.6 | 845.5 | 1171.0 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cal_Example_Adat_Set002 | 1.02380692 | 1.00117741 | 1.31243001 | 0.67812509 | 1.09317038 | 0.98499534 | 0.95953484 | 0.95154455 | 0.90594178 | 1.08143713 | 0.98143972 | 0.98821187 | 0.92700024 | 1.03983569 | 1.02055454 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalQcRatio_Example_Adat_Set002_170255 | 1.192 | 1.009 | 0.821 | 1.123 | 1.083 | 1.028 | 1.006 | 1.025 | 0.991 | 0.949 | 1.002 | 0.990 | 1.010 | 1.039 | 0.951 |
---|
PlateId | PlateRunDate | ScannerID | PlatePosition | SlideId | Subarray | SampleId | SampleType | PercentDilution | SampleMatrix | Barcode | Barcode2d | SampleName | SampleNotes | AliquotingNotes | SampleDescription | AssayNotes | TimePoint | ExtIdentifier | SsfExtId | SampleGroup | SiteId | TubeUniqueID | CLI | HybControlNormScale | RowCheck | NormScale_20 | NormScale_0_005 | NormScale_0_5 | ANMLFractionUsed_20 | ANMLFractionUsed_0_005 | ANMLFractionUsed_0_5 | Age | Sex | | | | | | | | | | | | | | | |
---|
Example Adat Set001 | 2020-06-18 | SG15214400 | H9 | 258495800012 | 3 | 1 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.98185998 | PASS | 1.03693580 | 0.85701624 | 0.77717491 | 0.914 | 0.869 | 0.903 | 76 | F | 729.9 | 16230.2 | 177.9 | 11903.3 | 1378.1 | 11997.2 | 2455.9 | 20988.1 | 442.5 | 414.2 | 712.5 | 8965.5 | 2030.6 | 2181.5 | 1096.4 |
---|
H8 | 258495800004 | 7 | 2 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.96671829 | PASS | 0.96022505 | 0.84858420 | 0.85201953 | 0.937 | 0.956 | 0.973 | 55 | F | 873.3 | 17253.4 | 152.8 | 16508.8 | 1652.0 | 14574.6 | 1595.0 | 11498.5 | 501.1 | 505.9 | 629.9 | 8669.7 | 1301.6 | 1571.2 | 1149.0 |
---|
H7 | 258495800010 | 8 | 3 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 1.00193072 | PASS | 0.98411617 | 1.03270156 | 0.91519153 | 0.907 | 0.919 | 0.915 | 47 | M | 993.0 | 13094.1 | 127.5 | 7577.0 | 1711.7 | 14468.7 | 503.3 | 14697.7 | 2883.2 | 445.8 | 510.6 | 6728.9 | 1067.3 | 1528.9 | 1027.8 |
---|
H6 | 258495800003 | 4 | 4 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94017961 | PASS | 1.07839878 | 0.94626841 | 0.91246731 | 0.934 | 0.919 | 0.912 | 37 | M | 906.5 | 20991.4 | 155.0 | 8673.7 | 1667.5 | 9913.1 | 438.4 | 20819.0 | 375.2 | 644.8 | 547.8 | 8629.0 | 1162.4 | 1173.7 | 1091.6 |
---|
H5 | 258495800009 | 4 | 5 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94621098 | PASS | 0.84679446 | 0.92904553 | 0.77413056 | 0.707 | 0.894 | 0.708 | 71 | F | 747.0 | 8070.4 | 124.0 | 20423.7 | 1426.6 | 11345.0 | 1954.5 | 16168.9 | 356.9 | 446.4 | 541.7 | 8125.2 | 1667.0 | 1048.6 | 1132.6 |
---|
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
---|
Example Adat Set002 | 2020-07-20 | SG15214400 | A2 | 258495800108 | 3 | 188 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.96699908 | PASS | 0.95993275 | 1.08910138 | 0.99491979 | 0.566 | 0.912 | 0.719 | 38 | F | 714.7 | 19877.3 | 114.5 | 15151.9 | 894.7 | 17266.2 | 682.8 | 27419.4 | 480.3 | 705.1 | 527.9 | 6638.2 | 3919.7 | 1787.5 | 1191.1 |
---|
A12 | 258495800104 | 2 | 189 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.91482584 | PASS | 1.21880129 | 1.01022697 | 0.99244374 | 0.918 | 0.919 | 0.926 | 40 | F | 865.8 | 25801.4 | 123.6 | 15711.6 | 1308.4 | 16598.3 | 1369.2 | 15153.5 | 474.2 | 655.0 | 592.2 | 8953.9 | 2494.9 | 2156.2 | 1391.5 |
---|
A11 | 258495800108 | 5 | 190 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.88282283 | PASS | 1.36699142 | 1.16271427 | 1.19673587 | 0.927 | 0.981 | 0.964 | 43 | M | 869.7 | 13728.5 | 140.9 | 11437.3 | 1353.5 | 17996.2 | 1344.2 | 10575.3 | 433.7 | 439.8 | 530.7 | 6193.9 | 2067.6 | 2466.6 | 1114.8 |
---|
A10 | 258495800105 | 5 | 191 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.95792282 | PASS | 1.30590374 | 0.98395166 | 0.97460119 | 0.835 | 0.963 | 0.944 | 55 | M | 529.2 | 13298.2 | 161.7 | 14210.8 | 1026.0 | 14549.0 | 1466.1 | 9683.8 | 291.6 | 435.8 | 676.1 | 9584.8 | 1799.5 | 1347.8 | 1194.2 |
---|
A1 | 258495800110 | 5 | 192 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.97384118 | PASS | 1.30710646 | 0.93230123 | 1.00804341 | 0.793 | 0.963 | 0.933 | 56 | F | 1934.4 | 7567.8 | 133.0 | 13614.3 | 1220.2 | 16223.8 | 1110.9 | 7737.4 | 364.2 | 3407.0 | 645.2 | 7867.1 | 1720.9 | 1888.2 | 1293.8 |
---|
192 rows × 15 columns
Lifting ADAT data between assay versions.
Adat data can be lifted from one SomaScan Assay version's RFU space to another SomaScan Assay version's RFU space. This is achieved by scaling SOMAmer reagent measurement columns using scale factors available at menu.somalogic.com and built in to this tool in the Adat.lift()
method.
The example Adat exists in SomaScan Version V4.0 assay space (also called 5K in some literature). In this example we will lift to SomaScan V5.0 (11K) assay space. It is important to know that only SOMAmer reagent measurements in both assay versions can be lifted. When lifting from a smaller to a larger plex (as demonstrated) the resulting Adat
will remain in the smaller plex size. When lifting from a larger to smaller plex size reagents that don't exist in the small plex size will be scaled by 1.0. The end user might choose to redact the lifted Adat
to the smaller plex to better merge data.
The tool will raise in error if the end user attempts to lift an Adat
object to its current version or an unsupported assay version.
Assay version mapping:
SomaScan data can be referred to by the assay version i.e. 'V5.0' or by the plex size i.e. '11K'. The tool can use either 'V5.0' or '11K' interchangeably in it's input. The mapping between these terms is shown in the table below:
SomaScan Assay Version | SomaScan Plex | SomaScan Menu Size |
---|
V4 | 5K | 5284 |
V4.1 | 7K | 7596 |
V5.0 | 11K | 11083 |
return to top
lifted_adat = adat.lift('V5.0')
lifted_adat
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead tr th {
text-align: left;
}
.dataframe thead tr:last-of-type th {
text-align: right;
}
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SeqId | 10000-28 | 10001-7 | 10003-15 | 10006-25 | 10008-43 | 10011-65 | 10012-5 | 10013-34 | 10014-31 | 10015-119 | ... | 9981-18 | 9983-97 | 9984-12 | 9986-14 | 9989-12 | 9993-11 | 9994-217 | 9995-6 | 9997-12 | 9999-1 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SeqIdVersion | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ... | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SomaId | SL019233 | SL002564 | SL019245 | SL019228 | SL019234 | SL019246 | SL014669 | SL025418 | SL007803 | SL014924 | ... | SL018293 | SL019202 | SL019205 | SL005356 | SL019194 | SL019212 | SL019217 | SL013164 | SL019215 | SL019231 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TargetFullName | Beta-crystallin B2 | RAF proto-oncogene serine/threonine-protein kinase | Zinc finger protein 41 | ETS domain-containing protein Elk-1 | Guanylyl cyclase-activating protein 1 | Inositol polyphosphate 5-phosphatase OCRL-1 | SAM pointed domain-containing Ets transcription factor | Fc_MOUSE | Zinc finger protein SNAI2 | Voltage-gated potassium channel subunit beta-2 | ... | Protein FAM234B | Inactive serine protease 35 | Protein YIPF6 | Neuropeptide W | Leucine-rich repeat-containing protein 24 | Zinc finger protein 264 | Potassium-transporting ATPase subunit beta | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial | UBX domain-containing protein 4 | Interferon regulatory factor 6 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Target | CRBB2 | c-Raf | ZNF41 | ELK1 | GUC1A | OCRL | SPDEF | Fc_MOUSE | SLUG | KCAB2 | ... | K1467 | PRS35 | YIPF6 | Neuropeptide W | LRC24 | ZN264 | ATP4B | DUT | UBXN4 | IRF6 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UniProt | P43320 | P04049 | P51814 | P19419 | P43080 | Q01968 | O95238 | Q99LC4 | O43623 | Q13303 | ... | A2RU67 | Q8N3Z0 | Q96EC8 | Q8N729 | Q50LG9 | O43296 | P51164 | P33316 | Q92575 | O14896 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EntrezGeneID | 1415 | 5894 | 7592 | 2002 | 2978 | 4952 | 25803 | | 6591 | 8514 | ... | 57613 | 167681 | 286451 | 283869 | 441381 | 9422 | 496 | 1854 | 23190 | 3664 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EntrezGeneSymbol | CRYBB2 | RAF1 | ZNF41 | ELK1 | GUCA1A | OCRL | SPDEF | | SNAI2 | KCNAB2 | ... | KIAA1467 | PRSS35 | YIPF6 | NPW | LRRC24 | ZNF264 | ATP4B | DUT | UBXN4 | IRF6 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Organism | Human | Human | Human | Human | Human | Human | Human | Mouse | Human | Human | ... | Human | Human | Human | Human | Human | Human | Human | Human | Human | Human |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Units | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | ... | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU | RFU |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Type | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | ... | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein | Protein |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Dilution | 20 | 20 | 0.5 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | ... | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PlateScale_Reference | 687.4 | 227.8 | 126.9 | 634.2 | 585.0 | 2807.1 | 1623.3 | 499.6 | 857.2 | 443.3 | ... | 643.9 | 430.0 | 627.5 | 3644.5 | 449.4 | 953.3 | 1971.1 | 1275.6 | 4426.9 | 851.9 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalReference | 687.4 | 227.8 | 126.9 | 634.2 | 585.0 | 2807.1 | 1623.3 | 499.6 | 857.2 | 443.3 | ... | 643.9 | 430.0 | 627.5 | 3644.5 | 449.4 | 953.3 | 1971.1 | 1275.6 | 4426.9 | 851.9 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cal_Example_Adat_Set001 | 1.01252025 | 1.01605709 | 0.95056180 | 0.99607350 | 0.94051447 | 1.05383489 | 1.17290462 | 1.07095391 | 1.03464092 | 1.07466667 | ... | 0.98035932 | 1.04878049 | 1.03513692 | 0.96341431 | 1.01444695 | 1.04551437 | 0.98299422 | 0.97426106 | 0.96896272 | 0.96042841 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ColCheck | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | ... | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS | PASS |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalQcRatio_Example_Adat_Set001_170255 | 1.008 | 0.970 | 1.046 | 1.042 | 1.036 | 0.975 | 1.010 | 0.953 | 0.978 | 0.975 | ... | 0.982 | 0.949 | 1.003 | 0.938 | 1.017 | 0.998 | 1.071 | 0.985 | 0.960 | 0.974 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | QcReference_170255 | 505.4 | 223.9 | 119.6 | 667.2 | 587.5 | 2617.6 | 1340.6 | 443.0 | 1289.4 | 441.5 | ... | 700.7 | 393.2 | 612.6 | 3089.2 | 455.1 | 885.6 | 1389.7 | 950.9 | 5560.7 | 1033.6 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Cal_Example_Adat_Set002 | 1.01476233 | 1.03686846 | 1.15258856 | 0.93581231 | 0.96201283 | 1.03133955 | 1.21250373 | 1.18192572 | 0.98926717 | 1.13173347 | ... | 0.96075798 | 1.15250603 | 1.12013567 | 1.08296437 | 0.99314917 | 1.08268030 | 1.02784586 | 0.97351752 | 0.94828953 | 0.92900763 |
---|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CalQcRatio_Example_Adat_Set002_170255 | 1.067 | 1.007 | 0.981 | 1.026 | 0.998 | 1.013 | 1.078 | 0.996 | 0.971 | 0.941 | ... | 0.982 | 0.993 | 0.990 | 0.929 | 0.978 | 0.961 | 1.022 | 0.970 | 1.027 | 0.997 |
---|
PlateId | PlateRunDate | ScannerID | PlatePosition | SlideId | Subarray | SampleId | SampleType | PercentDilution | SampleMatrix | Barcode | Barcode2d | SampleName | SampleNotes | AliquotingNotes | SampleDescription | AssayNotes | TimePoint | ExtIdentifier | SsfExtId | SampleGroup | SiteId | TubeUniqueID | CLI | HybControlNormScale | RowCheck | NormScale_20 | NormScale_0_005 | NormScale_0_5 | ANMLFractionUsed_20 | ANMLFractionUsed_0_005 | ANMLFractionUsed_0_5 | Age | Sex | | | | | | | | | | | | | | | | | | | | | |
---|
Example Adat Set001 | 2020-06-18 | SG15214400 | H9 | 258495800012 | 3 | 1 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.98185998 | PASS | 1.03693580 | 0.85701624 | 0.77717491 | 0.914 | 0.869 | 0.903 | 76 | F | 386.0 | 309.5 | 97.6 | 449.1 | 396.6 | 4965.9 | 1106.7 | 274.9 | 786.3 | 567.2 | ... | 551.9 | 352.5 | 408.4 | 3027.5 | 538.8 | 686.3 | 5202.4 | 2188.4 | 12697.7 | 966.5 |
---|
H8 | 258495800004 | 7 | 2 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.96671829 | PASS | 0.96022505 | 0.84858420 | 0.85201953 | 0.937 | 0.956 | 0.973 | 55 | F | 384.3 | 292.9 | 99.1 | 418.6 | 382.6 | 2149.6 | 1307.8 | 324.1 | 779.4 | 371.8 | ... | 689.3 | 358.2 | 456.0 | 5724.5 | 470.3 | 663.0 | 1195.9 | 2302.7 | 13247.8 | 824.2 |
---|
H7 | 258495800010 | 8 | 3 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 1.00193072 | PASS | 0.98411617 | 1.03270156 | 0.91519153 | 0.907 | 0.919 | 0.915 | 47 | M | 336.6 | 299.0 | 2948.3 | 420.1 | 299.3 | 2306.6 | 1290.9 | 348.6 | 845.0 | 416.8 | ... | 547.0 | 382.0 | 503.9 | 3380.7 | 405.3 | 647.6 | 1552.4 | 1183.2 | 11072.1 | 1145.8 |
---|
H6 | 258495800003 | 4 | 4 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94017961 | PASS | 1.07839878 | 0.94626841 | 0.91246731 | 0.934 | 0.919 | 0.912 | 37 | M | 358.5 | 247.4 | 109.9 | 420.0 | 331.7 | 2261.4 | 1184.1 | 362.0 | 4348.0 | 374.6 | ... | 561.9 | 384.4 | 477.7 | 1361.8 | 493.0 | 643.5 | 1005.3 | 1399.4 | 9082.4 | 804.6 |
---|
H5 | 258495800009 | 4 | 5 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.94621098 | PASS | 0.84679446 | 0.92904553 | 0.77413056 | 0.707 | 0.894 | 0.708 | 71 | F | 377.2 | 709.3 | 93.3 | 589.3 | 313.1 | 1949.4 | 990.0 | 272.8 | 787.7 | 723.8 | ... | 480.0 | 343.0 | 742.3 | 4846.0 | 487.7 | 701.4 | 1132.4 | 9852.9 | 38461.1 | 2865.9 |
---|
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
---|
Example Adat Set002 | 2020-07-20 | SG15214400 | A2 | 258495800108 | 3 | 188 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.96699908 | PASS | 0.95993275 | 1.08910138 | 0.99491979 | 0.566 | 0.912 | 0.719 | 38 | F | 393.3 | 954.0 | 124.2 | 719.8 | 1284.4 | 1312.0 | 750.7 | 312.1 | 727.7 | 829.2 | ... | 454.3 | 301.8 | 531.0 | 1658.5 | 541.8 | 861.5 | 1352.3 | 11604.6 | 45580.6 | 3687.1 |
---|
A12 | 258495800104 | 2 | 189 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.91482584 | PASS | 1.21880129 | 1.01022697 | 0.99244374 | 0.918 | 0.919 | 0.926 | 40 | F | 337.4 | 281.6 | 82.5 | 625.5 | 26153.5 | 1856.4 | 1004.8 | 297.4 | 734.0 | 388.3 | ... | 636.7 | 292.7 | 410.7 | 9236.8 | 487.6 | 629.3 | 1910.9 | 1855.0 | 9778.6 | 1004.4 |
---|
A11 | 258495800108 | 5 | 190 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.88282283 | PASS | 1.36699142 | 1.16271427 | 1.19673587 | 0.927 | 0.981 | 0.964 | 43 | M | 372.9 | 270.8 | 204.2 | 472.6 | 446.1 | 1733.8 | 1067.7 | 354.3 | 745.7 | 410.7 | ... | 566.0 | 364.5 | 448.2 | 2597.7 | 515.6 | 621.4 | 1113.3 | 1302.7 | 8766.2 | 770.8 |
---|
A10 | 258495800105 | 5 | 191 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.95792282 | PASS | 1.30590374 | 0.98395166 | 0.97460119 | 0.835 | 0.963 | 0.944 | 55 | M | 320.4 | 319.1 | 105.9 | 527.1 | 370.8 | 1701.9 | 756.9 | 266.4 | 618.4 | 453.9 | ... | 536.3 | 309.1 | 434.0 | 5167.2 | 522.8 | 588.2 | 891.1 | 2466.6 | 15455.9 | 1190.4 |
---|
A1 | 258495800110 | 5 | 192 | Sample | 20 | Plasma-PPT | | | | | | | | | | | | | | | 0.97384118 | PASS | 1.30710646 | 0.93230123 | 1.00804341 | 0.793 | 0.963 | 0.933 | 56 | F | 370.3 | 288.1 | 187.2 | 469.9 | 438.5 | 1777.9 | 787.3 | 249.4 | 930.8 | 423.7 | ... | 601.9 | 285.9 | 467.0 | 2564.2 | 590.0 | 673.2 | 1036.7 | 2142.1 | 7950.7 | 722.8 |
---|
192 rows × 5284 columns
lifted_adat = adat.lift('11K')
from somadata.data import getSomaScanLiftCCC
ccc = getSomaScanLiftCCC()
ccc
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| Serum Lin's CCC v5.0 11K to v4.1 7K | Plasma Lin's CCC v5.0 11K to v4.1 7K | Serum Lin's CCC v5.0 11K to v4.0 5K | Plasma Lin's CCC v5.0 11K to v4.0 5K | Serum Lin's CCC v4.1 7K to v4.0 5K | Plasma Lin's CCC v4.1 7K to v4.0 5K |
---|
10000-28 | 0.977 | 0.982 | 0.970 | 0.966 | 0.967 | 0.963 |
---|
10001-7 | 0.857 | 0.961 | 0.819 | 0.860 | 0.875 | 0.875 |
---|
10003-15 | 0.759 | 0.787 | 0.761 | 0.674 | 0.774 | 0.668 |
---|
10006-25 | 0.937 | 0.927 | 0.903 | 0.864 | 0.937 | 0.877 |
---|
10008-43 | 0.951 | 0.939 | 0.915 | 0.879 | 0.925 | 0.908 |
---|
... | ... | ... | ... | ... | ... | ... |
---|
9993-11 | 0.823 | 0.855 | 0.704 | 0.753 | 0.714 | 0.711 |
---|
9994-217 | 0.492 | 0.964 | 0.502 | 0.767 | 0.809 | 0.778 |
---|
9995-6 | 0.975 | 0.976 | 0.965 | 0.916 | 0.983 | 0.922 |
---|
9997-12 | 0.877 | 0.955 | 0.857 | 0.892 | 0.926 | 0.885 |
---|
9999-1 | 0.909 | 0.962 | 0.870 | 0.883 | 0.944 | 0.898 |
---|
11083 rows × 6 columns
Lin's CCC Between Lifted and Assay Space Native Data
The tool allows you to display Lin's concordance correlation coefficient (Lin 1989) derived during the calculation of the lifting scale factors. This metric allows you to see how well lifted data is expected to correlate with date collected originally in the target assay data signal space. A Lin's CCC close to 1.0 indicates strong correlation indicating the signal would be highly concordant with the lifted value if the sample data were collected in the target assay version space.
ccc["Plasma Lin's CCC v5.0 11K to v4.0 5K"]
10000-28 0.966
10001-7 0.860
10003-15 0.674
10006-25 0.864
10008-43 0.879
...
9993-11 0.753
9994-217 0.767
9995-6 0.916
9997-12 0.892
9999-1 0.883
Name: Plasma Lin's CCC v5.0 11K to v4.0 5K, Length: 11083, dtype: float64
Writing an ADAT
file
In order to store or share analysis the user may need to write out an ADAT file. This utility supports writing to the file system.
return to top
adat.to_adat('/tmp/out_file.adat')
Typical Analyses
Although it is beyond the scope of the SomaData
package, below are 3
sample analyses that typical users/clients would perform on SomaLogic data.
They are not intended to be a definitive guide in statistical
analysis and existing packages do exist in the Python
universe that perform parts
or extensions of these techniques. Many variations of the workflows below
exist, however the framework highlights how one could perform standard
preliminary analyses on SomaLogic data for:
- Two-group differential expression (t-test)
- Binary classification (logistic regression)
- Linear regression
return to top
Compare Groups (M/F) via t-test
from somadata.data.example_data import example_data
from scipy.stats import ttest_ind
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from io import StringIO
Display the shape of the adat (rows, columns)
example_data.shape
(192, 5284)
Describe the sample types within the adat and display their counts
Counter(example_data.index.get_level_values('SampleType'))
Counter({'Sample': 170, 'Calibrator': 10, 'Buffer': 6, 'QC': 6})
Prepare the adat for analysis
filtered_transformed_data = (
example_data
.exclude_on_meta(axis=0, name='Sex', values=[''])
.pick_on_meta(axis=0, name='SampleType', values=['Sample'])
.apply(np.log10)
)
clean_data = (
filtered_transformed_data
.insert_keyed_meta(
axis=0,
key_meta_name='Sex',
inserted_meta_name='Group',
values_dict={'M': 1, 'F': 0}
)
.apply(lambda x: x - x.mean(), axis=0)
.apply(lambda x: x / x.std(), axis=0)
)
Display the grouping counts
print(clean_data.index.to_frame()['Sex'].value_counts())
print(clean_data.index.to_frame()['Group'].value_counts())
Sex
F 85
M 85
Name: count, dtype: int64
Group
0 85
1 85
Name: count, dtype: int64
Split the adat based on Group
and perform t-test across all aptamers
tt_g0 = clean_data.pick_on_meta(axis=0, name='Group', values=[0])
tt_g1 = clean_data.pick_on_meta(axis=0, name='Group', values=[1])
tt_res = ttest_ind(tt_g0, tt_g1)
t_tests = list(zip(clean_data.columns.get_level_values('TargetFullName'), tt_res.pvalue))
Sort the results and display the 12 aptamers with the most significant p-values
t_tests_sorted = sorted(t_tests, key=lambda x: x[1])
tt_top_12_analytes = [name for name, p_value in t_tests_sorted[:12]]
tt_top_12_analytes
['Prostate-specific antigen',
'Pregnancy zone protein',
'Kunitz-type protease inhibitor 3',
'Follicle stimulating hormone',
'Ectonucleotide pyrophosphatase/phosphodiesterase family member 2',
'Beta-defensin 104',
'Luteinizing hormone',
'Cysteine-rich secretory protein 2',
'Human Chorionic Gonadotropin',
'Serum amyloid P-component',
'SLIT and NTRK-like protein 4',
'Neurotrimin']
Plot the Group
log(RFU) for each aptamer
tt_df= (
filtered_transformed_data
.pick_meta(axis=1, names=['TargetFullName'])
.pick_on_meta(axis=1, name='TargetFullName', values=tt_top_12_analytes)[tt_top_12_analytes]
.reset_index()
)
tt_melted_df = pd.melt(tt_df, value_vars=tt_top_12_analytes, id_vars='Sex', value_name='log10(RFU)')
tt_p = sns.catplot(
x='Sex',
y='log10(RFU)',
col='TargetFullName',
data=tt_melted_df,
kind='box',
col_wrap=3,
sharey=False
)
tt_p.set_titles(row_template='{row_name}', col_template='{col_name}')
plt.show()

Logistic Regression (Predict Sex)
from sklearn.model_selection import train_test_split
from sklearn import metrics
from scipy.stats import pearsonr
import statsmodels.api as sm
from IPython.display import HTML
Prepare the data for LogisticRegression
logr_x_df = (
clean_data
.pick_meta(axis=1, names=['SeqId', 'TargetFullName'])
.reset_index(drop=True)
)
logr_y_df = (
clean_data.index.get_level_values('Group')
)
logr_x_train, logr_x_test, logr_y_train, logr_y_test = train_test_split(logr_x_df, logr_y_df, test_size=25, random_state=0)
Perform univariate logistic regression for each aptamer
logr_apt_perf = []
for seq_info in logr_x_train:
x = sm.add_constant(logr_x_train[seq_info])
mod = sm.GLM(logr_y_train, x, family=sm.families.Binomial())
res = mod.fit()
logr_apt_perf.append(res.summary2().tables[1].loc[[seq_info]])
Wrangle the GLM results of each aptamer into a dataframe and sort them by p-value
logr_df = pd.concat(logr_apt_perf).reset_index()
logr_df['SeqId'] = [x[0] for x in logr_df['index']]
logr_df['TargetFullName'] = [x[1] for x in logr_df['index']]
logr_df = logr_df.drop('index', axis=1)
logr_df = logr_df[['SeqId', 'TargetFullName', 'Coef.', 'Std.Err.', 'z', 'P>|z|', '[0.025', '0.975]']].set_index('SeqId')
logr_df_sorted = logr_df.sort_values('P>|z|')
HTML(logr_df_sorted.head(20).to_html())
| TargetFullName | Coef. | Std.Err. | z | P>|z| | [0.025 | 0.975] |
---|
SeqId | | | | | | | |
---|
6580-29 | Pregnancy zone protein | -3.079818 | 0.489558 | -6.291020 | 3.153866e-10 | -4.039334 | -2.120302 |
---|
5763-67 | Beta-defensin 104 | 2.974778 | 0.478400 | 6.218181 | 5.029509e-10 | 2.037131 | 3.912425 |
---|
3032-11 | Follicle stimulating hormone | -1.505718 | 0.250398 | -6.013292 | 1.817935e-09 | -1.996490 | -1.014946 |
---|
7926-13 | Kunitz-type protease inhibitor 3 | 2.887475 | 0.482526 | 5.984087 | 2.176067e-09 | 1.941742 | 3.833208 |
---|
16892-23 | Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 | -2.335113 | 0.396641 | -5.887216 | 3.927542e-09 | -3.112516 | -1.557710 |
---|
9282-12 | Cysteine-rich secretory protein 2 | 1.768026 | 0.309050 | 5.720837 | 1.060006e-08 | 1.162299 | 2.373754 |
---|
2953-31 | Luteinizing hormone | -1.319728 | 0.240323 | -5.491466 | 3.986115e-08 | -1.790753 | -0.848702 |
---|
4914-10 | Human Chorionic Gonadotropin | -1.244551 | 0.229781 | -5.416240 | 6.086534e-08 | -1.694914 | -0.794188 |
---|
8468-19 | Prostate-specific antigen | 5.841131 | 1.113030 | 5.247953 | 1.537986e-07 | 3.659632 | 8.022630 |
---|
2474-54 | Serum amyloid P-component | 1.434929 | 0.279218 | 5.139108 | 2.760458e-07 | 0.887673 | 1.982185 |
---|
8428-102 | Neurotrimin | -1.264317 | 0.246142 | -5.136543 | 2.798380e-07 | -1.746745 | -0.781888 |
---|
9002-36 | Serpin A11 | -1.087385 | 0.219035 | -4.964434 | 6.890169e-07 | -1.516685 | -0.658084 |
---|
3066-12 | Galectin-3 | -1.005615 | 0.206735 | -4.864276 | 1.148764e-06 | -1.410808 | -0.600423 |
---|
5116-62 | Roundabout homolog 2 | -1.291594 | 0.270447 | -4.775767 | 1.790237e-06 | -1.821661 | -0.761527 |
---|
7139-14 | SLIT and NTRK-like protein 4 | 1.018520 | 0.218625 | 4.658761 | 3.181183e-06 | 0.590023 | 1.447016 |
---|
8484-24 | Leptin | -0.991585 | 0.219260 | -4.522415 | 6.113800e-06 | -1.421326 | -0.561843 |
---|
5934-1 | Ferritin | 1.012300 | 0.227525 | 4.449188 | 8.619536e-06 | 0.566360 | 1.458240 |
---|
15324-58 | Ferritin light chain | 1.002813 | 0.226429 | 4.428822 | 9.474919e-06 | 0.559021 | 1.446606 |
---|
4234-8 | Interleukin-1 receptor-like 1 | 1.134058 | 0.258632 | 4.384831 | 1.160761e-05 | 0.627149 | 1.640968 |
---|
2696-87 | Persephin | 1.412833 | 0.323348 | 4.369389 | 1.245947e-05 | 0.779083 | 2.046584 |
---|
Fit model
logr_top_analytes = [(index, row['TargetFullName']) for index, row in logr_df_sorted.head(5).iterrows()]
x = sm.add_constant(logr_x_train[logr_top_analytes])
logr_mod = sm.GLM(logr_y_train, x, family=sm.families.Binomial())
logr_res = logr_mod.fit()
logr_res.summary()
Generalized Linear Model Regression ResultsDep. Variable: | y | No. Observations: | 145 |
---|
Model: | GLM | Df Residuals: | 139 |
---|
Model Family: | Binomial | Df Model: | 5 |
---|
Link Function: | Logit | Scale: | 1.0000 |
---|
Method: | IRLS | Log-Likelihood: | -8.4167 |
---|
Date: | Fri, 01 Mar 2024 | Deviance: | 16.833 |
---|
Time: | 13:19:34 | Pearson chi2: | 17.8 |
---|
No. Iterations: | 10 | Pseudo R-squ. (CS): | 0.7186 |
---|
Covariance Type: | nonrobust | | |
---|
| coef | std err | z | P>|z| | [0.025 | 0.975] |
---|
const | 1.6106 | 1.178 | 1.367 | 0.172 | -0.699 | 3.920 |
---|
('6580-29', 'Pregnancy zone protein') | -7.0008 | 3.112 | -2.250 | 0.024 | -13.099 | -0.902 |
---|
('5763-67', 'Beta-defensin 104') | 2.7821 | 1.255 | 2.217 | 0.027 | 0.322 | 5.242 |
---|
('3032-11', 'Follicle stimulating hormone') | -1.1722 | 0.818 | -1.432 | 0.152 | -2.776 | 0.432 |
---|
('7926-13', 'Kunitz-type protease inhibitor 3') | 2.2901 | 1.053 | 2.174 | 0.030 | 0.226 | 4.354 |
---|
('16892-23', 'Ectonucleotide pyrophosphatase/phosphodiesterase family member 2') | -3.6045 | 1.498 | -2.407 | 0.016 | -6.540 | -0.669 |
---|
x = sm.add_constant(logr_x_test[logr_top_analytes])
logr_predictions = [1 if val > 0.5 else 0 for val in logr_res.predict(x)]
cm = metrics.confusion_matrix(logr_y_test.values, logr_predictions)
tp = cm[1, 1]
tn = cm[0, 0]
fp = cm[0, 1]
fn = cm[1, 0]
logr_perf_df = pd.DataFrame.from_records({
'Sensitivity': tp / (tp + fn),
'Specificity': tn / (tn + fp),
'Accuracy': (tp + tn) / sum(sum(cm)),
'PPV': tp / (tp + fp),
'NPV': tn / (tn + fn)
}, index=['Value'])
HTML(logr_perf_df.to_html())
| Accuracy | NPV | PPV | Sensitivity | Specificity |
---|
Value | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
---|
plt.figure(figsize=(3,3))
sns.heatmap(cm, annot=True, fmt=".3f", linewidths=.5, square=True, cmap='Blues')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
all_sample_title = 'Accuracy Score: {0}'.format(100 * logr_perf_df['Accuracy'].values[0])
plt.title(all_sample_title)
plt.show()

Linear Regression (Predict Age)
We use the same clean_data
as the logistic regression analysis above.
Wrangle data
linr_x_df = (
clean_data
.pick_meta(axis=1, names=['SeqId', 'TargetFullName'])
.reset_index(drop=True)
)
linr_y = (
[float(age) for age in clean_data.index.get_level_values('Age')]
)
linr_x_train, linr_x_test, linr_y_train, linr_y_test = train_test_split(linr_x_df, linr_y, test_size=25, random_state=5)
Perform univariate linear regression for each aptamer
linr_apt_perf = []
for seq_info in linr_x_df:
x = sm.add_constant(linr_x_train[seq_info])
mod = sm.OLS(linr_y_train, x)
res = mod.fit()
linr_apt_perf.append(res.summary2().tables[1].loc[[seq_info]])
Wrangle the GLM results of each aptamer into a dataframe and sort them by p-value
linr_res_df = pd.concat(linr_apt_perf).reset_index()
linr_res_df['SeqId'] = [x[0] for x in linr_res_df['index']]
linr_res_df['TargetFullName'] = [x[1] for x in linr_res_df['index']]
linr_res_df = linr_res_df.drop('index', axis=1)
linr_res_df = linr_res_df[['SeqId', 'TargetFullName', 'Coef.', 'Std.Err.', 't', 'P>|t|', '[0.025', '0.975]']].set_index('SeqId')
linr_sorted_res_df = linr_res_df.sort_values('P>|t|')
HTML(linr_sorted_res_df.head(20).to_html())
| TargetFullName | Coef. | Std.Err. | t | P>|t| | [0.025 | 0.975] |
---|
SeqId | | | | | | | |
---|
3045-72 | Pleiotrophin | 6.713339 | 0.865578 | 7.755906 | 1.506400e-12 | 5.002359 | 8.424320 |
---|
4374-45 | Growth/differentiation factor 15 | 6.766537 | 0.902926 | 7.494011 | 6.377086e-12 | 4.981730 | 8.551343 |
---|
3024-18 | Alpha-2-antiplasmin | -6.258739 | 0.895850 | -6.986373 | 9.854830e-11 | -8.029558 | -4.487920 |
---|
6392-7 | WNT1-inducible-signaling pathway protein 2 | 6.206203 | 0.895426 | 6.931007 | 1.321588e-10 | 4.436222 | 7.976185 |
---|
8480-29 | EGF-containing fibulin-like extracellular matrix protein 1 | 6.179473 | 0.900370 | 6.863260 | 1.889770e-10 | 4.399719 | 7.959227 |
---|
15640-54 | Transgelin | 6.159769 | 0.905043 | 6.806048 | 2.552783e-10 | 4.370777 | 7.948761 |
---|
15533-97 | Macrophage scavenger receptor types I and II | 5.986741 | 0.907615 | 6.596127 | 7.616175e-10 | 4.192666 | 7.780815 |
---|
15386-7 | Fatty acid-binding protein, adipocyte | 6.130562 | 0.931954 | 6.578182 | 8.355679e-10 | 4.288376 | 7.972748 |
---|
16818-200 | CUB domain-containing protein 1 | 5.919909 | 0.902842 | 6.556970 | 9.321408e-10 | 4.135268 | 7.704550 |
---|
4496-60 | Macrophage metalloelastase | 6.149946 | 0.940133 | 6.541570 | 1.009072e-09 | 4.291592 | 8.008299 |
---|
3362-61 | Chordin-like protein 1 | 5.765444 | 0.913703 | 6.309975 | 3.287540e-09 | 3.959334 | 7.571554 |
---|
4541-49 | Cell adhesion molecule-related/down-regulated by oncogenes | -5.703166 | 0.906248 | -6.293164 | 3.578780e-09 | -7.494540 | -3.911793 |
---|
3600-2 | Chitotriosidase-1 | 5.831590 | 0.951184 | 6.130871 | 8.071212e-09 | 3.951391 | 7.711789 |
---|
2609-59 | Cystatin-C | 5.577894 | 0.934072 | 5.971588 | 1.773159e-08 | 3.731521 | 7.424267 |
---|
3234-23 | Coiled-coil domain-containing protein 80 | 5.647487 | 0.948795 | 5.952270 | 1.949244e-08 | 3.772010 | 7.522963 |
---|
14133-93 | Interleukin-1 receptor type 2 | -5.489368 | 0.926319 | -5.926004 | 2.216438e-08 | -7.320415 | -3.658321 |
---|
19601-15 | Ankyrin repeat and SOCS box protein 9 | 5.412074 | 0.930313 | 5.817474 | 3.755863e-08 | 3.573131 | 7.251018 |
---|
9793-145 | Immunoglobulin superfamily DCC subclass member 4 | -5.292703 | 0.911239 | -5.808247 | 3.927116e-08 | -7.093942 | -3.491463 |
---|
2677-1 | Epidermal growth factor receptor | -5.341396 | 0.919656 | -5.808039 | 3.931061e-08 | -7.159272 | -3.523520 |
---|
4968-50 | Macrophage-capping protein | 5.345710 | 0.926458 | 5.770050 | 4.721157e-08 | 3.514387 | 7.177033 |
---|
Feed top 8 SOMAmers into statsmodels OLS regression
linr_top_analytes = [(index, row['TargetFullName']) for index, row in linr_sorted_res_df.head(8).iterrows()]
x = sm.add_constant(linr_x_train[linr_top_analytes])
mod = sm.OLS(linr_y_train, x).fit()
mod.summary()
OLS Regression ResultsDep. Variable: | y | R-squared: | 0.501 |
---|
Model: | OLS | Adj. R-squared: | 0.471 |
---|
Method: | Least Squares | F-statistic: | 17.05 |
---|
Date: | Fri, 01 Mar 2024 | Prob (F-statistic): | 2.29e-17 |
---|
Time: | 13:20:02 | Log-Likelihood: | -522.29 |
---|
No. Observations: | 145 | AIC: | 1063. |
---|
Df Residuals: | 136 | BIC: | 1089. |
---|
Df Model: | 8 | | |
---|
Covariance Type: | nonrobust | | |
---|
| coef | std err | t | P>|t| | [0.025 | 0.975] |
---|
const | 55.5436 | 0.765 | 72.602 | 0.000 | 54.031 | 57.057 |
---|
('3045-72', 'Pleiotrophin') | 1.6913 | 1.197 | 1.413 | 0.160 | -0.676 | 4.059 |
---|
('4374-45', 'Growth/differentiation factor 15') | 1.2404 | 1.258 | 0.986 | 0.326 | -1.247 | 3.728 |
---|
('3024-18', 'Alpha-2-antiplasmin') | -2.5113 | 0.910 | -2.758 | 0.007 | -4.312 | -0.711 |
---|
('6392-7', 'WNT1-inducible-signaling pathway protein 2') | 1.5143 | 0.997 | 1.519 | 0.131 | -0.457 | 3.486 |
---|
('8480-29', 'EGF-containing fibulin-like extracellular matrix protein 1') | 2.1363 | 0.972 | 2.197 | 0.030 | 0.214 | 4.059 |
---|
('15640-54', 'Transgelin') | 1.2006 | 1.010 | 1.189 | 0.237 | -0.796 | 3.198 |
---|
('15533-97', 'Macrophage scavenger receptor types I and II') | 0.8792 | 1.223 | 0.719 | 0.474 | -1.540 | 3.298 |
---|
('15386-7', 'Fatty acid-binding protein, adipocyte') | 1.1453 | 1.180 | 0.971 | 0.333 | -1.188 | 3.479 |
---|
Omnibus: | 2.712 | Durbin-Watson: | 2.042 |
---|
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 2.501 |
---|
Skew: | -0.322 | Prob(JB): | 0.286 |
---|
Kurtosis: | 3.008 | Cond. No. | 4.53 |
---|
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Compute predictions on test set
x = sm.add_constant(linr_x_test[linr_top_analytes])
linr_predictions = mod.predict(x)
linr_pred_df = pd.DataFrame({
'Actual Age': linr_y_test,
'Predicted Age': linr_predictions
})
linr_pred_df['Pred Error'] = linr_pred_df['Predicted Age'] - linr_pred_df['Actual Age']
Compute model performance
def linCCC(x, y):
if len(x) != len(y):
raise Exception('Arrays are not the same length!')
a = 2 * pearsonr(x, y)[0] * np.std(x, ddof=1) * np.std(y, ddof=1)
b = np.var(x, ddof=1) + np.var(y, ddof=1) + (np.mean(x) - np.mean(y))**2
return a / b
n = linr_x_test.shape[0]
p = len(linr_top_analytes)
linr_metrics_df = pd.DataFrame({
'rss': linr_pred_df['Pred Error'].apply(lambda x: x**2).sum(),
'tss': sum((linr_pred_df['Actual Age'] - linr_pred_df['Actual Age'].mean()) ** 2),
'R2': pearsonr(linr_pred_df['Actual Age'], linr_pred_df['Predicted Age'])[0] ** 2,
'MAE': np.mean(np.abs(linr_pred_df['Pred Error'])),
'RMSE': np.sqrt(np.mean(linr_pred_df['Pred Error'] ** 2)),
'CCC': linCCC(linr_predictions, linr_y_test)
}, index=['Value'])
linr_metrics_df['rsq'] = 1 - (linr_metrics_df['rss'] / linr_metrics_df['tss'])
linr_metrics_df['rsqadj'] = max(0, 1 - (1 - linr_metrics_df['rsq'][0]) * (n - 1) / (n - p - 1)),
HTML(linr_metrics_df.to_html())
| rss | tss | R2 | MAE | RMSE | CCC | rsq | rsqadj |
---|
Value | 989.768231 | 2771.84 | 0.674484 | 5.214434 | 6.292116 | 0.752326 | 0.64292 | 0.46438 |
---|
Visualize performance via concordance plot of predicted and actual values
f, ax = plt.subplots(1, figsize=(5, 5), dpi=150)
plot_range = [linr_pred_df[['Actual Age', 'Predicted Age']].min().min() * 0.95, linr_pred_df[['Actual Age', 'Predicted Age']].max().max() * 1.05]
ax.plot(plot_range, plot_range, c='g')
ax.scatter(linr_pred_df['Actual Age'], linr_pred_df['Predicted Age'], alpha=0.5)
ax.set(
xlim=plot_range,
xlabel='Actual Age',
ylim=plot_range,
ylabel='Predicted Age',
title='Concordance in Predicted vs. Actual Age'
)
plt.show()

- Many variants of above possible.
- Goal to provide general framework to handle SomaLogic data.
- Not definitive guide in statistical theory, etc.
MIT LICENSE
return to top