Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

spvcm

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

spvcm

Fit spatial multilevel models and diagnose convergence

  • 0.3.0
  • PyPI
  • Socket score

Maintainers
2

=========================================================================== spvcm: Gibbs sampling for spatially-correlated variance-components

.. image:: https://travis-ci.org/pysal/spvcm.svg?branch=master :target: https://travis-ci.org/pysal/spvcm .. image:: https://zenodo.org/badge/79168765.svg :target: https://zenodo.org/badge/latestdoi/79168765

This is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. For a complete overview, consult the walkthrough_.

author: Levi John Wolf

email: levi.john.wolf@gmail.com

institution: University of Bristol & University of Chicago Center for Spatial Data Science

preprint: on the Open Science Framework_


Installation

This package works best in Python 3.5, but unittests pass in Python 2.7 as well. Only Python 3.5+ is officially supported.

To install, first install the Anaconda Python Distribution_ from Continuum Analytics_. Installation of the package has been tested in Windows (10, 8, 7) Mac OSX (10.8+) and Linux using Anaconda 4.2.0, with Python version 3.5.

Once Anaconda is installed, spvcm can be installed using pip, the Python Package Manager.

pip install spvcm

To install this from source, one can also navigate to the source directory and use:

pip install ./

which will install the package from the target source directory.


Usage

To use the package, start up a Python interpreter and run: import spvcm.api as spvcm

Then, many differnet variance components model specificaions are available in:

spvcm.both spvcm.upper spvcm.lower

For more thorough directions, consult the Jupyter Notebook, using the sampler.ipynb, which is provided in the spvcm/examples directory.


Citation

Levi John Wolf. (2016). Gibbs Sampling for a class of spatially-correlated variance components models. University of Chicago Center for Spatial Data Science Technical Report.

.. _Distribution: https://https://www.continuum.io/downloads .. _Analytics: https://continuum.io .. _walkthrough: https://github.com/ljwolf/spvcm/blob/master/spvcm/examples/using_the_sampler.ipynb .. _Open Science Framework: https://osf.io/ks6t3/

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc