google-datacatalog-mysql-connector
Library for ingesting MySQL metadata into Google Cloud Data Catalog.
Disclaimer: This is not an officially supported Google product.
Table of Contents
1. Installation
Install this library in a virtualenv using pip. virtualenv is a tool to
create isolated Python environments. The basic problem it addresses is one of
dependencies and versions, and indirectly permissions.
With virtualenv, it's possible to install this library without needing system
install permissions, and without clashing with the installed system
dependencies. Make sure you use Python 3.6+.
1.1. Mac/Linux
pip3 install virtualenv
virtualenv --python python3.6 <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-datacatalog-mysql-connector
1.2. Windows
pip3 install virtualenv
virtualenv --python python3.6 <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-datacatalog-mysql-connector
1.3. Install from source
1.3.1. Get the code
git clone https://github.com/GoogleCloudPlatform/datacatalog-connectors-rdbms/
cd datacatalog-connectors-rdbms/google-datacatalog-mysql-connector
1.3.2. Create and activate a virtualenv
pip3 install virtualenv
virtualenv --python python3.6 <your-env>
source <your-env>/bin/activate
1.3.3. Install the library
pip install .
2. Environment setup
2.1. Auth credentials
2.1.1. Create a service account and grant it below roles
2.1.2. Download a JSON key and save it as
<YOUR-CREDENTIALS_FILES_FOLDER>/mysql2dc-credentials.json
Please notice this folder and file will be required in next steps.
2.2. Set environment variables
Replace below values according to your environment:
export GOOGLE_APPLICATION_CREDENTIALS=data_catalog_credentials_file
export MYSQL2DC_DATACATALOG_PROJECT_ID=google_cloud_project_id
export MYSQL2DC_DATACATALOG_LOCATION_ID=google_cloud_location_id
export MYSQL2DC_MYSQL_SERVER=mysql_server
export MYSQL2DC_MYSQL_USERNAME=mysql_username
export MYSQL2DC_MYSQL_PASSWORD=mysql_password
export MYSQL2DC_MYSQL_DATABASE=mysql_database
export MYSQL2DC_RAW_METADATA_CSV=mysql_raw_csv (If supplied ignores the MYSQL server credentials)
3. Adapt user configurations
Along with default metadata, the connector can ingest optional metadata as well, such as number of
rows in each table. The table below shows what metadata is scraped by default, and what is configurable.
Metadata | Description | Scraped by default | Config option |
---|
database_name | Name of a database | Y | --- |
table_name | Name of a table | Y | --- |
table_type | Type of a table (BASE, VIEW, etc) | Y | --- |
create_time | When the table was created | Y | --- |
update_time | When the table was updated | Y | --- |
table_size_mb | Size of a table, in MB | Y | --- |
column_name | Name of a column | Y | --- |
column_type | Column data type | Y | --- |
column_default_value | Default value of a column | Y | --- |
column_nullable | Whether a column is nullable | Y | --- |
column_char_length | Char length of values in a column | Y | --- |
column_numeric_precision | Numeric precision of values in a column | Y | --- |
ANALYZE TABLE statement | Statement to refresh metadata information | N | refresh_metadata_tables |
table_rows | Number of rows in a table | N | sync_row_counts |
Sample configuration file ingest_cfg.yaml in the repository root shows what kind of configuration is expected.
If you want to run optional queries, please add ingest_cfg.yaml to the directory from which you
execute the connector and adapt it to your needs.
When running the ANALYZE TABLE
statement, the connector credentials need INSERT privilege
in the database system tables, otherwise you will receive the following error:
mysql.connector.errors.ProgrammingError: 1142 (42000): INSERT command denied to user
'read-only'@'{HOST}' for table '{TABLE_NAME}'
If it is desired to have only READ privilege make sure the flag refresh_metadata_tables
is disabled
4. Run entry point
4.1. Run Python entry point
google-datacatalog-mysql-connector \
--datacatalog-project-id=$MYSQL2DC_DATACATALOG_PROJECT_ID \
--datacatalog-location-id=$MYSQL2DC_DATACATALOG_LOCATION_ID \
--mysql-host=$MYSQL2DC_MYSQL_SERVER \
--mysql-user=$MYSQL2DC_MYSQL_USERNAME \
--mysql-pass=$MYSQL2DC_MYSQL_PASSWORD \
--mysql-database=$MYSQL2DC_MYSQL_DATABASE \
--raw-metadata-csv=$MYSQL2DC_RAW_METADATA_CSV
4.2. Run the Python entry point with a user-defined entry resource URL prefix
This option is useful when the connector cannot accurately determine the database hostname.
For example when running under proxies, load balancers or database read replicas,
you can specify the prefix of your master instance so the resource URL will point
to the exact database where the data is stored.
google-datacatalog-mysql-connector \
--datacatalog-project-id=$MYSQL2DC_DATACATALOG_PROJECT_ID \
--datacatalog-location-id=$MYSQL2DC_DATACATALOG_LOCATION_ID \
--datacatalog-entry-resource-url-prefix project/database-instance \
--mysql-host=$MYSQL2DC_MYSQL_SERVER \
--mysql-user=$MYSQL2DC_MYSQL_USERNAME \
--mysql-pass=$MYSQL2DC_MYSQL_PASSWORD \
--mysql-database=$MYSQL2DC_MYSQL_DATABASE \
--raw-metadata-csv=$MYSQL2DC_RAW_METADATA_CSV
4.3. Run Docker entry point
docker build -t mysql2datacatalog .
docker run --rm --tty -v YOUR-CREDENTIALS_FILES_FOLDER:/data mysql2datacatalog \
--datacatalog-project-id=$MYSQL2DC_DATACATALOG_PROJECT_ID \
--datacatalog-location-id=$MYSQL2DC_DATACATALOG_LOCATION_ID \
--mysql-host=$MYSQL2DC_MYSQL_SERVER \
--mysql-user=$MYSQL2DC_MYSQL_USERNAME \
--mysql-pass=$MYSQL2DC_MYSQL_PASSWORD \
--mysql-database=$MYSQL2DC_MYSQL_DATABASE \
--raw-metadata-csv=$MYSQL2DC_RAW_METADATA_CSV
5 Scripts inside tools
5.1. Run clean up
export MYSQL2DC_DATACATALOG_PROJECT_IDS=my-project-1,my-project-2
python tools/cleanup_datacatalog.py --datacatalog-project-ids=$MYSQL2DC_DATACATALOG_PROJECT_IDS
6. Developer environment
6.1. Install and run Yapf formatter
pip install --upgrade yapf
yapf --in-place --recursive src tests
yapf --diff --recursive src tests
curl -o pre-commit.sh https://raw.githubusercontent.com/google/yapf/master/plugins/pre-commit.sh
chmod a+x pre-commit.sh
mv pre-commit.sh .git/hooks/pre-commit
6.2. Install and run Flake8 linter
pip install --upgrade flake8
flake8 src tests
6.3. Run Tests
python setup.py test
7. Metrics
Metrics README.md
8. Troubleshooting
In the case a connector execution hits Data Catalog quota limit, an error will be raised and logged with the following detailement, depending on the performed operation READ/WRITE/SEARCH:
status = StatusCode.RESOURCE_EXHAUSTED
details = "Quota exceeded for quota metric 'Read requests' and limit 'Read requests per minute' of service 'datacatalog.googleapis.com' for consumer 'project_number:1111111111111'."
debug_error_string =
"{"created":"@1587396969.506556000", "description":"Error received from peer ipv4:172.217.29.42:443","file":"src/core/lib/surface/call.cc","file_line":1056,"grpc_message":"Quota exceeded for quota metric 'Read requests' and limit 'Read requests per minute' of service 'datacatalog.googleapis.com' for consumer 'project_number:1111111111111'.","grpc_status":8}"
For more info about Data Catalog quota, go to: Data Catalog quota docs.