Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

honeybee-vtk

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

honeybee-vtk

Honeybee extension for translating HBJSON to VTK

  • 0.39.1
  • PyPI
  • Socket score

Maintainers
1

honeybee-vtk

🐝 VTK - Honeybee extension for viewing HBJSON in a web browser.

HBJSON exported to web

Build Status Coverage Status Python 3.7

GitHub tag (latest by date) GitHub

GitHub last commit GitHub issues GitHub closed issues

Installation

pip install honeybee-vtk

QuickStart

import honeybee_vtk

Translate a HBJSON file to an HTML or vtkjs file

Usage: honeybee-vtk translate [OPTIONS] HBJSON_FILE

  Translate a HBJSON file to an HTML or a vtkjs file.

  Args:
      hbjson-file: Path to an HBJSON file.

Options:
  -n, --name TEXT                 Name of the output file.  [default: model]
  -f, --folder DIRECTORY          Path to target folder.  [default: .]
  -ft, --file-type [html|vtkjs|vtp|vtk]
                                  Switch between html and vtkjs formats
                                  [default: html]

  -mdm, --model-display-mode [shaded|surface|surfacewithedges|wireframe|points]
                                  Set display mode for the model.  [default:
                                  shaded]

  -gdm, --grid-display-mode [shaded|surface|surfacewithedges|wireframe|points]
                                  Set display mode for the grid.  [default:
                                  shaded]

  -go, --grid-options [ignore|points|meshes]
                                  Export sensor grids as either points or
                                  meshes.  [default: ignore]

  -sh, --show-html, --show        Open the generated HTML file in a browser.
                                  [default: False]

  -cf, --config PATH              File Path to the config json file which can
                                  be used to mount simulation data on HBJSON.

  -vd, --validate-data            Validate simulation data before loading on
                                  the model. This is recommended when using
                                  this command locally.  [default: False]

  --help                          Show this message and exit.

Export images from an HBJSON file

Usage: honeybee-vtk export-images [OPTIONS] HBJSON_FILE

  Export images from radiance views in a HBJSON file.

  Args:
      hbjson-file: Path to an HBJSON file.

Options:
  -f, --folder DIRECTORY          Path to target folder.  [default: .]
  -it, --image-type [png|jpg|ps|tiff|bmp|pnm]
                                  choose the type of image file.  [default:
                                  jpg]

  -iw, --image-width INTEGER      Width of images in pixels. If not set,
                                  Radiance default x dimension of view will be
                                  used.  [default: 0]

  -ih, --image-height INTEGER     Height of images in pixels.If not set,
                                  Radiance default y dimension of view will be
                                  used.  [default: 0]

  -bc, --background-color <INTEGER INTEGER INTEGER>...
                                  Set background color for images  [default:
                                  255, 255, 255]

  -mdm, --model-display-mode [shaded|surface|surfacewithedges|wireframe|points]
                                  Set display mode for the model.  [default:
                                  shaded]

  -go, --grid-options [ignore|points|meshes]
                                  Export sensor grids as either points or
                                  meshes.  [default: ignore]

  -gdm, --grid-display-mode [shaded|surface|surfacewithedges|wireframe|points]
                                  Set display mode for the Sensorgrids.
                                  [default: surfacewithedges]

  -vf, --view PATH                File Path to the Radiance view file.
                                  Multiple view files are accepted.

  -cf, --config PATH              File Path to the config json file which can
                                  be used to mount simulation data on HBJSON.

  -vd, --validate-data            Validate simulation data before loading on
                                  the model. This is recommended when using
                                  this command locally.  [default: False]

  --grid / --model                Boolean to decide whether to export the
                                  images of a whole model or only the grids.
                                  Set it to True to export the grids.
                                  [default: False]

  -gf, --grid-filter TEXT         Filter sensor grids by name. Use this option
                                  multiple times to use multiple grid
                                  identifiers as filters.  [default: ]

  --text-content TEXT             Text to be displayed on the image.
  -th, --text-height INTEGER      Set the height of the text in pixels.
                                  [default: 15]

  -tc, --text-color <INTEGER INTEGER INTEGER>...
                                  Set the text color.  [default: 0, 0, 0]
  -tp, --text-position <FLOAT FLOAT>...
                                  Set the text position in the image. The
                                  setting is applied at the lower left point
                                  of the text. (0,0) will give you the lower
                                  left corner of the image. (1,1) will give
                                  you the upper right corner of the image.
                                  [default: 0.5, 0.0]

  -tb, --text-bold                Set the text to be bold.  [default: False]
  --help                          Show this message and exit.

Write a config file to be consumed by the Translate command

Usage: honeybee-vtk config [OPTIONS] INPUT_FILE

  Write a config file to be consumed by honeybee-vtk.

  Args:
      input_file: A path to the input file in json format.
      folder_path: Path to the folder where the config file shall be written.
          Defaults to the current working directory.
      name: A string as the name of the config file. Defaults to 'config'.

Options:
  -fp, --folder-path PATH  Path to the folder where the config file shall be
                           written.  [default: .]

  -n, --name TEXT          Name of the config file.  [default: config]
  --help                   Show this message and exit.

Create arrows and write to a vtp file and open it in a minimalist desktop viewer

from ladybug_geometry.geometry3d import Point3D, Vector3D
from honeybee_vtk.to_vtk import create_arrow

points = [Point3D(0, 0, 0), Point3D(1, 1, 0), Point3D(1, 0, 0)]
vectors = [Vector3D(0, 0, 1), Vector3D(1, 1, 1), Vector3D(2, 0, 0)]
arrows = create_arrow(points, vectors)
arrows.to_vtk('.', 'arrows')

arrows

Create a group of points and color them based on distance from origin, write them to a vtp file and and open it in a minimalist desktop viewer


from ladybug_geometry.geometry3d import Point3D
from honeybee_vtk.to_vtk import convert_points

points = []
for x in range(-50, 50, 5):
    for y in range(-50, 50, 5):
        for z in range(-50, 50, 5):
            points.append(Point3D(x, y, z))

origin = Point3D(0, 0, 0)
distance = [pt.distance_to_point(origin) for pt in points]

# convert points to polydata
pts = convert_points(points)
pts.add_data(distance, name='distance', cell=False)
pts.color_by('distance', cell=False)
pts.to_vtk('.', 'colored_points')

arrows

Draw a sunpath

from ladybug.location import Location
from ladybug.sunpath import Sunpath, Point3D, Vector3D
from honeybee_vtk.to_vtk import convert_polyline, create_polyline
from honeybee_vtk.types import JoinedPolyData
import math

# Create location. You can also extract location data from an epw file.
sydney = Location('Sydney', 'AUS', latitude=-33.87, longitude=151.22, time_zone=10)

# Initiate sunpath
sp = Sunpath.from_location(sydney)

radius = 100
origin = Point3D(0, 0, 0)
polylines = sp.hourly_analemma_polyline3d(origin=origin, daytime_only=True, radius=radius)
sp_pls = [convert_polyline(pl) for pl in polylines]

# add a circle
north = origin.move(Vector3D(0, radius, 0))
plot_points = [
    north.rotate_xy(math.radians(angle), origin)
    for angle in range(0, 365, 5)
]

plot = create_polyline(plot_points)

# join polylines into a single polydata
sunpath = JoinedPolyData.from_polydata(sp_pls)
# add plot
sunpath.append(plot)

sunpath.to_vtk('.', 'sunpath')

sunpath

Draw a sunpath with hourly data


from ladybug.epw import EPW
from ladybug.sunpath import Sunpath, Point3D, Vector3D
from honeybee_vtk.to_vtk import convert_points, convert_polyline, create_polyline
from honeybee_vtk.types import JoinedPolyData
import math

# Get location from epw file
epw = EPW('./tests/assets/in.epw')
location = epw.location

# Initiate sunpath
sp = Sunpath.from_location(location)

radius = 100
origin = Point3D(0, 0, 0)
polylines = sp.hourly_analemma_polyline3d(origin=origin, daytime_only=True, radius=radius)
sp_pls = [convert_polyline(pl) for pl in polylines]

# add a circle
north = origin.move(Vector3D(0, radius, 0))
plot_points = [
    north.rotate_xy(math.radians(angle), origin)
    for angle in range(0, 365, 5)
]

plot = create_polyline(plot_points)

# join polylines into a single polydata
sunpath = JoinedPolyData.from_polydata(sp_pls)
# add plot
sunpath.append(plot)
sunpath.to_vtk('.', 'sunpath')

# add sun positions and color them based on radiation
day = sp.hourly_analemma_suns(daytime_only=True)
# calculate sun positions from sun vector
pts = []
hours = []
for suns in day:
    for sun in suns:
        pts.append(origin.move(sun.sun_vector.reverse() * radius))
        hours.append(sun.hoy)

radiation_data = epw.global_horizontal_radiation
filtered_radiation_data = radiation_data.filter_by_hoys(hours)

sun_positions = convert_points(pts)
sun_positions.add_data(
    filtered_radiation_data.values, name='Globale Horizontal Radiation', cell=False
)
sun_positions.color_by('Global Horizontal Radiation', cell=False)
sun_positions.to_vtk('.', 'sun_positions')

sunpath with data

Load HB model

from honeybee_vtk.model import Model

hbjson = r'./tests/assets/gridbased.hbjson'
model = Model.from_hbjson(hbjson)
model.to_html(folder='.', name='two-rooms', show=True)

HBJSON model

Load HB model - change display mode and colors


from honeybee_vtk.model import Model, DisplayMode
from ladybug.color import Color

hbjson = r'./tests/assets/gridbased.hbjson'
model = Model.from_hbjson(hbjson)

# update model visualization to show edges
model.update_display_mode(DisplayMode.SurfaceWithEdges)

# set shades to wireframe mode and change their color to black
model.shades.display_mode = DisplayMode.Wireframe
model.shades.color = Color(0, 0, 0, 255)

# create an HTML file with embedded visualization. You can share this HTML as is
# and it will include all the information.
model.to_html('.', name='two-rooms', show=True)

# alternatively you can write it as a vtkjs file and visualize it in ParaviewGlance
# the `to_html` method calls this method under the hood.
# model.to_vtkjs(folder='.')

Modified HBJSON model

Load HB Model and daylight factor results


from honeybee_vtk.model import Model, DisplayMode, SensorGridOptions
import pathlib

hbjson = r'./tests/assets/revit_model/model.hbjson'
results_folder = r'./tests/assets/revit_model/df_results'

model = Model.from_hbjson(hbjson, load_grids=SensorGridOptions.Mesh)

# load the results for each grid
# note that we load the results using the order for model to ensure the order will match
daylight_factor = []
for grid in model.sensor_grids.data:
    res_file = pathlib.Path(results_folder, f'{grid.identifier}.res')
    grid_res = [float(v) for v in res_file.read_text().splitlines()]
    daylight_factor.append(grid_res)

# add the results to sensor grids as a new field
# per face is set to True since we loaded grids as a mesh
model.sensor_grids.add_data_fields(daylight_factor, name='Daylight Factor', per_face=True)
model.sensor_grids.color_by = 'Daylight Factor'

# make it pop!
# change display mode for sensor grids to be surface with edges
model.sensor_grids.display_mode = DisplayMode.SurfaceWithEdges
# update model visualization to wireframe
model.update_display_mode(DisplayMode.Wireframe)
# make shades to be shaded with edge
model.shades.display_mode = DisplayMode.SurfaceWithEdges

# export the model to a HTML file with embedded viewer and open the page in a browser
model.to_html('c:/ladybug', name='revit-model', show=True)

# alternatively you can write it as a vtkjs file and visualize it in ParaviewGlance
# the `to_html` method calls this method under the hood.
# model.to_vtkjs(folder='.')

Daylight factor results

Load HB Model and annual daylight results


from honeybee_vtk.model import Model, DisplayMode, SensorGridOptions
import pathlib

hbjson = r'./tests/assets/gridbased.hbjson'
results_folder = r'./tests/assets/annual_metrics'

model = Model.from_hbjson(hbjson, load_grids=SensorGridOptions.Mesh)

# load the results for each grid
# note that we load the results using the order for model to ensure the order will match
annual_metrics = [
    {'folder': 'da', 'extension': 'da', 'name': 'Daylight Autonomy'},
    {'folder': 'cda', 'extension': 'cda', 'name': 'Continuous Daylight Autonomy'},
    {'folder': 'udi', 'extension': 'udi', 'name': 'Useful Daylight Illuminance'},
    {'folder': 'udi_lower', 'extension': 'udi', 'name': 'Lower Daylight Illuminance'},
    {'folder': 'udi_upper', 'extension': 'udi', 'name': 'Excessive Daylight Illuminance'}
]
for metric in annual_metrics:
    results = []
    for grid in model.sensor_grids.data:
        res_file = pathlib.Path(
            results_folder, metric['folder'], f'{grid.identifier}.{metric["extension"]}'
        )
        grid_res = [float(v) for v in res_file.read_text().splitlines()]
        results.append(grid_res)

    # add the results to sensor grids as a new field
    # per face is set to True since we loaded grids as a mesh
    model.sensor_grids.add_data_fields(results, name=metric['name'], per_face=True)

# Set color by to Useful Daylight Illuminance
model.sensor_grids.color_by = 'Useful Daylight Illuminance'

# make it pop!
# change display mode for sensor grids to be surface with edges
model.sensor_grids.display_mode = DisplayMode.SurfaceWithEdges
# update model visualization to wireframe
model.update_display_mode(DisplayMode.Wireframe)

# export the model to a HTML file with embedded viewer and open the page in a browser
model.to_html('.', name='two-rooms', show=True)

# alternatively you can write it as a vtkjs file and visualize it in ParaviewGlance
# the `to_html` method calls this method under the hood.
# model.to_vtkjs(folder='.')

Annual daylight results

Save model with results as an image

from honeybee_vtk.model import Model, DisplayMode, SensorGridOptions
from honeybee_vtk.scene import Scene

import pathlib

hbjson = r'./tests/assets/gridbased.hbjson'
results_folder = r'./tests/assets/df_results'

model = Model.from_hbjson(hbjson, load_grids=SensorGridOptions.Mesh)

# load the results for each grid
# note that we load the results using the order for model to ensure the order will match
daylight_factor = []
for grid in model.sensor_grids.data:
    res_file = pathlib.Path(results_folder, f'{grid.identifier}.res')
    grid_res = [float(v) for v in res_file.read_text().splitlines()]
    daylight_factor.append(grid_res)

# add the results to sensor grids as a new field
# per face is set to True since we loaded grids as a mesh
model.sensor_grids.add_data_fields(
    daylight_factor, name='Daylight Factor', per_face=True, data_range=(0, 20)
)
model.sensor_grids.color_by = 'Daylight Factor'

# make it pop!
# change display mode for sensor grids to be surface with edges
model.sensor_grids.display_mode = DisplayMode.SurfaceWithEdges
# update model visualization to wireframe
model.update_display_mode(DisplayMode.Wireframe)
# make shades to be shaded with edge
model.shades.display_mode = DisplayMode.SurfaceWithEdges

# create a scene to render the model
scene = Scene()
scene.add_model(model)
# set a scale bar based on daylight factor values
color_range = model.sensor_grids.active_field_info.color_range()

# you can also save the scene as an image.
# right now you can't control the camera but camera control can be implemented.
scene.to_image('.', name='daylight_factor', image_scale=2, color_range=color_range)

# alternatively you can start an interactive window
# scene.show(color_range)

Captured image

Interactive renderer

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc